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The essence of proofs
Sequent calculus.

` ¬A,A
` ,A ` Δ,B
` ,Δ,A∧ B

` ,A,B
` ,A∨ B

` ¬B,B ` ¬A,A
` ¬B,¬A,B∧ A
` ¬A,¬B,B∧ A
` ¬A∨¬B,B∧ A

Linear logic (Girard). A⇒ B =!A( B A,B := Xi | X⊥i | A⊗ B | A` B (MLL).
MLL proof-structures (Girard).

ax

Axiom

⊗

Tensor

`

Par
(A⊥ ` B⊥)` (B⊗ A)

A⊥ ` B⊥

A⊥ B⊥

B⊗ A

B A

Other approaches.Miller’s expansion trees, deep inference, ...
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The computational and logical side of proofs
The cut rule.

 ` A Δ,A ` C
,Δ ` C

cut

Cut-elimination (Gentzen) :
Procedure of elimination of cuts
Proof-program correspondence (Curry, Ho-
ward) :
Cut-elimination ' program execution

Geometry of Interaction (Girard). Dynamics of proofs with more general objects.

1 2 3 4 5 6 7 8

Logical correctness. How to tell if a proof-structure is "logically correct"?
→ Danos-Regnier criterion : use some tests φ1, ..., φn.
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Transcendental Syntax

Quest for the essence of proofs. Given definition of proof 7→ Refinement.

Reverse engineering (GoI). Start from computation, derives linear logic.
Transcenscendental Syntax (Girard). Logic emerging from computation.

• 4 vague informal papers 7→ formalised (Eng, Seiller) ;

• introduces a model of computation "stellar resolution" (elementary bricks) ;

• “reconstruction" of linear logic.

We begin by defining the stellar resolution.
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Tile systems

Wang tiles (Wang).

2
3
2

1
2
4
1

3

2
3
2

1

2
4
1

3

2
3
2

1
2
3
2

1

2
4
1

3

• Tiles on Z2.

• Turing-complete.

Flexible tiles (Jonoska).

t1h1
h2

h3

t2
θ(h2)

h4
• No planarity.

• Can encode "rigid tiling".

• Used in DNA computing.
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Stellar Resolution
or Girard’s stars and constellations

ϕ1g(x)
+a(x)

−b(x)

ϕ2

−a(f(y)) +c(y)

Constellation  (n stars)
↓

Diagrams (maximal tilings)
↓

Constellation Ex()

A reformulation of Robinson’s first-order resolution
[g(x),−b(x),+a(x)] + [−a(f(y)),+c(y)] −→ [g(f(y)),−b(f(y)),+c(y)].

Very basic and well-known objects but new model of computation?
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Stellar Resolution
Automata and circuits unified

Extensible automata.
q0start q1 q2

0, 1

0 0

[−i(w),+a(w, q0)]+ [−a(0 ·w, q0),+a(w, q0)] + [−a(1 ·w, q0),+a(w, q0)]+
[−a(0 ·w, q0),+a(w, q1)]+ [−a(0 ·w, q1),+a(w, q2)]+ [−a(ε, q2), accept]

Modular circuits.

1 S

¬

∨ R

em = [ i0(1),+c0(1)] +[+c0(x),+c1(x),+c2(x)]
+[−c2(x),−not(x, r),+c3(r)] +
[−c1(x),−c3(y),−or(x, y, r),+c4(r)]
+[−c4(x), r(x)]

Information flow inside a structure. Turing-complete.
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1 S

¬

∨ R
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Reconstruction of the computational content of MLL

Cut-elimination for MLL (program execution). (Hyper)graph rewriting.

ax

cut

ax/cut;
⊗ `

cut

⊗/;̀ cut
cut

Geometry of Interaction.Maximal paths between axioms and cuts.

1 2

`
7

3 64 5

⊗

8

cut

ax ax ax

−→
1 2 3 64 5

−→ 1 3

Transcendental Syntax (actually GoI 3). Tiling of binary stars.
[+p7(l · x),+p7(r · x)] +[+p3(x),+p8(l · x)] + [+p8(r · x),+p6(x)]
[−p7(x),−p8(x)].
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Reconstruction of the logical content of MLL

Only some proof-structure are "logically correct".

Danos-Regnier correctness criterion.

Structure Axioms Test 1 Test 2

1 2

⊗

5

3 4

`
6

ax
ax

1 2 3 4
ax

ax

1 2

⊗

5

3 4

`L

6

1 2

⊗

5

3 4

`R

6

If Axioms+Test(i) is a tree, the structure is logically correct.

Transcendental Syntax. Testing as interaction between constellations.

• Ex(ax
S ] 

test(i)
S ) = [p1(x), ..., p2(x)] with conclusions {1, ..., n}.

• Ex(ax
S ] 

test(i)
S ) strongly normalising (MLL+MIX).
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(Unit) testing in logic et primitive typing
Generalising the correctness criterion

Unit testing in programming. A program f "correct" if f(ai) = bi for 1 ≤ i ≤ n.

Transcendental testing. A constellation  is "correct" if P(,i) for 1 ≤ i ≤ n.

• Induces an orthogonality relation  ⊥ ′ ⇐⇒ P(,′) "passing the test".

• Set of tests Tests and orthogonal Tests⊥ (all objects passing the tests).

• Reformulation : a constellation  is correct (w.r.t. ⊥)⇐⇒  ∈ Tests⊥.

Primitive typing generalised. Proof theory, type theory, programming languages, ...

• Type label A with tests Tests(A) (finite and chosen).

• t : A⇐⇒ t ∈ Tests(A)⊥.
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Realisability and interactive typing
Realisability applied to linear logic

Realisability. A = {t1, ..., tk, ...} (computational behaviour) and typing with t ∈ A.

Application of linear logic. Ludics (Girard), concurrent realisability (Beffara), ...

• Choose a binary relation ⊥ for "correct interaction" (e.g. program vs environment).

• Define A⊥ = { | ∀′ ∈ A, ⊥ ′} (linear negation / duality).

• A conduct⇐⇒ A = A⊥⊥⇐⇒ ∃B. A = B⊥ (A characterised by tests B).

• Assembling conducts : A⊗ B = {A ] B | A ∈ A,B ∈ B}⊥⊥.

• Retrieving other connectives : A` B = (A⊥ ⊗ B⊥)⊥ and A( B = A⊥ ` B.

The two typing unified. label tests Tests(A)⊥ (finite) vs conduct A (potentially infinite).
Adequation. Tests(A)⊥ ⊆ A.
Typing of tests for MLL. Tests(A) ⊆ A⊥. Co-existence with correctness witnesses.
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Playground
On independent subjects



Atypic typing and complexity

Computational objects. Automata, logic programs, circuits, tiling models, ...

Two understanding of types.

• Type labels : specification with finite testing.

• Interactive types : behavioural analysis.

Implicit Computational Complexity (ICC). Capture classes with models.
Previous works with flows (= binary stars) by Aubert & Bagnol. Capture of classes P and
(N)L (with pointer machines).
−→ Stellar Resolution can speak about NP and more. But what for?
Descriptive complexity. Capture classes with formulas.

• P and NP as classes of formulas (Immerman, Fagin).

• What about finite model theory (Model theory with finite structures/universes)?
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Extension to exponentials of linear logic

IMELL. A,B ::= Xi | X⊥i | A⊗ B | A` B | A⇒ B | (A⇒ B)⊥ (arbitrary use of A in A⇒ B).

Duplication.
ϕ1...
−p1(x · y)

...

ϕ2

+p1(t1 · (l · y)) ...

ϕ3

+p1(t2 · (r · y)) ...

Erasure.
q0start q1 q2

0, 1

0 0
ϕ1...
−p1(x)

...
Logical correctness for IMELL.Work in progress. Uses features of stellar resolution.
Alternative exponentials. Girard’s expansionals ↓A, ↑A.

12/13



Extension to exponentials of linear logic

IMELL. A,B ::= Xi | X⊥i | A⊗ B | A` B | A⇒ B | (A⇒ B)⊥ (arbitrary use of A in A⇒ B).

Duplication.
ϕ1...
−p1(x · y)

...

ϕ2

+p1(t1 · (l · y)) ...

ϕ3

+p1(t2 · (r · y)) ...

Erasure.
q0start q1 q2

0, 1

0 0
ϕ1...
−p1(x)

...
Logical correctness for IMELL.Work in progress. Uses features of stellar resolution.
Alternative exponentials. Girard’s expansionals ↓A, ↑A.

12/13



Extension to exponentials of linear logic

IMELL. A,B ::= Xi | X⊥i | A⊗ B | A` B | A⇒ B | (A⇒ B)⊥ (arbitrary use of A in A⇒ B).

Duplication.
ϕ1...
−p1(x · y)

...

ϕ2

+p1(t1 · (l · y)) ...

ϕ3

+p1(t2 · (r · y)) ...

Erasure.
q0start q1 q2

0, 1

0 0

ϕ1...
−p1(x)

...
Logical correctness for IMELL.Work in progress. Uses features of stellar resolution.
Alternative exponentials. Girard’s expansionals ↓A, ↑A.

12/13



Extension to exponentials of linear logic

IMELL. A,B ::= Xi | X⊥i | A⊗ B | A` B | A⇒ B | (A⇒ B)⊥ (arbitrary use of A in A⇒ B).

Duplication.
ϕ1...
−p1(x · y)

...

ϕ2

+p1(t1 · (l · y)) ...

ϕ3

+p1(t2 · (r · y)) ...

Erasure.
q0start q1 q2

0, 1

0 0
ϕ1...
−p1(x)

...

Logical correctness for IMELL.Work in progress. Uses features of stellar resolution.
Alternative exponentials. Girard’s expansionals ↓A, ↑A.

12/13



Extension to exponentials of linear logic

IMELL. A,B ::= Xi | X⊥i | A⊗ B | A` B | A⇒ B | (A⇒ B)⊥ (arbitrary use of A in A⇒ B).

Duplication.
ϕ1...
−p1(x · y)

...

ϕ2

+p1(t1 · (l · y)) ...

ϕ3

+p1(t2 · (r · y)) ...

Erasure.
q0start q1 q2

0, 1

0 0
ϕ1...
−p1(x)

...
Logical correctness for IMELL.Work in progress. Uses features of stellar resolution.

Alternative exponentials. Girard’s expansionals ↓A, ↑A.

12/13



Extension to exponentials of linear logic

IMELL. A,B ::= Xi | X⊥i | A⊗ B | A` B | A⇒ B | (A⇒ B)⊥ (arbitrary use of A in A⇒ B).

Duplication.
ϕ1...
−p1(x · y)

...

ϕ2

+p1(t1 · (l · y)) ...

ϕ3

+p1(t2 · (r · y)) ...

Erasure.
q0start q1 q2

0, 1

0 0
ϕ1...
−p1(x)

...
Logical correctness for IMELL.Work in progress. Uses features of stellar resolution.
Alternative exponentials. Girard’s expansionals ↓A, ↑A.

12/13



Conclusion

A new model of computation : Stellar Resolution.

→ Turing complete, generalised circuit-automata.

Can naturally encode proof-nets with both cut-elimination and logical correctness.
→More generally, can speak about "logic" in a broader sense.
→ Two understanding of types in the same framework (labels vs behavioural
descriptions).

A lot of connexions yet to be understood :models of DNA computing, automata theory,
computational complexity, relationship between logic and computation, complex systems,
...

Thank you for listening to my talk.
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