A technical reading of the Transcendental Syntax

LIPN – Université Sorbonne Paris Nord Boris Eng

Sequent calculus.

$$\frac{}{\vdash \neg A, A} \quad \frac{\vdash \Gamma, A \quad \vdash \Delta, B}{\vdash \Gamma, \Delta, A \land B} \quad \frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \lor B}$$

$$\begin{array}{c|c}
\hline \neg B, B & \vdash \neg A, A \\
\hline \hline \neg B, \neg A, B \land A \\
\hline \hline \neg A, \neg B, B \land A \\
\hline \hline \neg A \lor \neg B, B \land A \\
\hline \hline \neg A \lor \neg B, B \land A
\end{array}$$

Sequent calculus.

$$\frac{}{\vdash \neg A, A} \quad \frac{\vdash \Gamma, A \vdash \Delta, B}{\vdash \Gamma, \Delta, A \land B} \quad \frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \lor B} \qquad \frac{\vdash \neg B, B \vdash \neg A, A}{\vdash \neg B, \neg A, B \land A} \\ \frac{\vdash \neg B, \neg A, B \land A}{\vdash \neg A, \neg B, B \land A} \\ \frac{\vdash \neg A, \neg B, B \land A}{\vdash \neg A \lor \neg B, B \land A}$$

Linear logic (Girard). $A \Rightarrow B = !A \multimap B$ $A, B := X_i | X_i^{\perp} | A \otimes B | A \stackrel{\mathcal{D}}{\to} B$ (MLL).

Sequent calculus.

$$\frac{\vdash \neg A, A}{\vdash \neg A, A} \xrightarrow{\vdash \Gamma, A \vdash \Delta, B} \xrightarrow{\vdash \Gamma, A, B} \xrightarrow{\vdash \Gamma, A, B} \xrightarrow{\vdash \neg B, \neg A, B \land A} \xrightarrow{\vdash \neg A, \neg B, B \land A} \xrightarrow{\vdash \neg A, \neg B, B \land A}$$

Linear logic (Girard). $A \Rightarrow B = !A \multimap B$ MLL proof-structures (Girard).

 $A, B := X_i \mid X_i^{\perp} \mid A \otimes B \mid A \stackrel{\mathcal{D}}{\to} B$ (MLL).

 $\vdash \neg A, A$

Sequent calculus.

$$\frac{}{\vdash \neg A, A} \quad \frac{\vdash \Gamma, A \vdash \Delta, B}{\vdash \Gamma, \Delta, A \land B} \quad \frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \lor B} \quad \frac{\vdash \neg B, B \vdash \neg A, A}{\vdash \neg B, \neg A, B \land A} \\
\frac{\vdash \neg B, \neg A, B \land A}{\vdash \neg A, \neg B, B \land A} \\
\frac{\vdash \neg A, \neg B, B \land A}{\vdash \neg A, \neg B, B \land A}$$

Linear logic (Girard). $A \Rightarrow B = !A \multimap B$ $A, B := X_i | X_i^{\perp} | A \otimes B | A^{\Re} B$ (MLL). MLL proof-structures (Girard).

Other approaches. Miller's expansion trees, deep inference, ...

The computational and logical side of proofs The cut rule.

 $\frac{\Gamma\vdash A \quad \Delta, A\vdash C}{\Gamma, \Delta\vdash C}$

The computational and logical side of proofs The cut rule.

$$\frac{\Gamma \vdash A \quad \Delta, A \vdash C}{\Gamma, \Delta \vdash C} \quad \underbrace{\bullet}_{\text{cut}} \quad \underbrace{\bullet}_{\text{cut}}$$

The cut rule.

$$\frac{\Gamma \vdash A \quad \Delta, A \vdash C}{\Gamma, \Delta \vdash C} \quad \stackrel{\bullet}{\underbrace{}}_{cut} \quad \stackrel{\bullet}{\underbrace{}_{cut} \quad \stackrel{\bullet}{\underbrace{}}_{cut} \quad \stackrel{\bullet}{\underbrace{}}_{cut} \quad \stackrel{\bullet}{\underbrace{}}_{cut} \quad \stackrel{\bullet}{\underbrace{}}_{cut} \quad \stackrel{\bullet}{\underbrace{}}_{cut} \quad \stackrel{\bullet}{\underbrace{}}_{cut} \quad \stackrel{\bullet}{\underbrace{}_{cut} \quad \stackrel{\bullet}{\underbrace{}}_{cut} \quad \stackrel{\bullet}{\underbrace{}_{cut} \quad \stackrel{\bullet}{\underbrace{}_{cut} \quad \stackrel{\bullet}{\underbrace{}}_{cut} \quad \stackrel{\bullet}{\underbrace{}_{cut} \quad \stackrel{\bullet}{\underbrace{}}_{cut} \quad \stackrel{\bullet}{\underbrace{}$$

Cut-elimination (Gentzen) :

Procedure of elimination of cuts

The cut rule.

$$\frac{\Gamma \vdash A \quad \Delta, A \vdash C}{\Gamma, \Delta \vdash C} \quad \bigcup_{cut \leftarrow cut \leftarrow$$

Cut-elimination (Gentzen) :

Procedure of elimination of cuts **Proof-program correspondence (Curry, Howard) :**

Cut-elimination \simeq program execution

The cut rule.

$$\frac{\Gamma \vdash A \quad \Delta, A \vdash C}{\Gamma, \Delta \vdash C} \quad \bigcup_{cut \leftarrow cut \leftarrow$$

Cut-elimination (Gentzen) :

Procedure of elimination of cuts **Proof-program correspondence (Curry, Howard) :**

Cut-elimination \simeq program execution

Geometry of Interaction (Girard). Dynamics of proofs with more general objects.

The cut rule.

$$\frac{\Gamma \vdash A \quad \Delta, A \vdash C}{\Gamma, \Delta \vdash C} \quad \bigcup_{cut \leftarrow cut \leftarrow$$

Cut-elimination (Gentzen) :

Procedure of elimination of cuts **Proof-program correspondence (Curry, Howard) :**

Cut-elimination \simeq program execution

Geometry of Interaction (Girard). Dynamics of proofs with more general objects.

Logical correctness. How to tell if a proof-structure is "logically correct"?

The cut rule.

$$\frac{\Gamma \vdash A \quad \Delta, A \vdash C}{\Gamma, \Delta \vdash C} \quad \bigcup_{cut \leftarrow cut \leftarrow$$

Cut-elimination (Gentzen) :

Procedure of elimination of cuts **Proof-program correspondence (Curry, Howard) :**

Cut-elimination \simeq program execution

Geometry of Interaction (Girard). Dynamics of proofs with more general objects.

Logical correctness. How to tell if a proof-structure is "logically correct"?

 \rightarrow Danos-Pegnier criterion : use some tests α_{i}

Quest for the essence of proofs. Given definition of proof → Refinement.

Quest for the essence of proofs. Given definition of proof \mapsto Refinement. Reverse engineering (Gol). Start from computation, derives linear logic.

Quest for the essence of proofs. Given definition of proof \mapsto Refinement. Reverse engineering (Gol). Start from computation, derives linear logic. Transcenscendental Syntax (Girard). Logic emerging from computation.

Quest for the essence of proofs. Given definition of proof → Refinement. Reverse engineering (Gol). Start from computation, derives linear logic. Transcenscendental Syntax (Girard). Logic emerging from computation.

• 4 vague informal papers → formalised (Eng, Seiller);

Quest for the essence of proofs. Given definition of proof → Refinement. Reverse engineering (Gol). Start from computation, derives linear logic. Transcenscendental Syntax (Girard). Logic emerging from computation.

- 4 vague informal papers → formalised (Eng, Seiller);
- introduces a model of computation "stellar resolution" (elementary bricks);

Quest for the essence of proofs. Given definition of proof → Refinement. Reverse engineering (Gol). Start from computation, derives linear logic. Transcenscendental Syntax (Girard). Logic emerging from computation.

- 4 vague informal papers → formalised (Eng, Seiller);
- introduces a model of computation "stellar resolution" (elementary bricks);
- "reconstruction" of linear logic.

Quest for the essence of proofs. Given definition of proof → Refinement. Reverse engineering (Gol). Start from computation, derives linear logic. Transcenscendental Syntax (Girard). Logic emerging from computation.

- 4 vague informal papers → formalised (Eng, Seiller);
- introduces a model of computation "stellar resolution" (elementary bricks);
- "reconstruction" of linear logic.

We begin by defining the stellar resolution.

Wang tiles (Wang).

Wang tiles (Wang).

- Tiles on **Z**².
- Turing-complete.

Wang tiles (Wang).

- Tiles on **Z**².
- Turing-complete.

Flexible tiles (Jonoska).

$$h_1 \bullet \underbrace{\begin{array}{c} h_2 \\ h_1 \bullet \end{array}}_{h_3 \bullet} \underbrace{\begin{array}{c} \theta(h_2) \\ \bullet \end{array}}_{t_2} \bullet h_4$$

Wang tiles (Wang).

- Tiles on **Z**².
- Turing-complete.

Flexible tiles (Jonoska).

- No planarity.
- Can encode "rigid tiling".
- Used in DNA computing.

$$g(x) \bullet \overbrace{\phi_1}^{+a(x)} \bullet \\ -b(x) \bullet$$

$$-a(f(y)) + c(y)$$

$$g(x) \bullet (\phi_1) + a(x) - a(f(y)) + c(y) + c(y$$

$$g(f(y)) \bullet (\phi_1) \bullet (\phi_2) \bullet +c(y) \\ -b(f(y)) \bullet (\phi_1) \bullet (\phi_2) \bullet +c(y)$$

+c(y)g(f(y)) • $\phi_1 \cup \phi_2$ -b(f(y))

or Girard's stars and constellations

+c(y)g(f(y)) • $\phi_1 \cup \phi_2$ -b(f(y))

Constellation Φ (*n* stars) ↓ Diagrams (maximal tilings) ↓ Constellation Ex(Φ)

or Girard's stars and constellations

+c(y)g(f(y)) • $\phi_1 \cup \phi_2$ -b(f(y))

Constellation Φ (*n* stars) ↓ Diagrams (maximal tilings) ↓ Constellation Ex(Φ)

or Girard's stars and constellations

$$g(f(y)) \bullet \qquad \qquad +c(y) \\ \bullet \\ -b(f(y)) \bullet$$

Constellation Φ (*n* stars) ↓ Diagrams (maximal tilings) ↓ Constellation Ex(Φ)

A reformulation of Robinson's first-order resolution $[g(x), -b(x), \underline{+a(x)}] + [\underline{-a(f(y))}, +c(y)] \longrightarrow [g(f(y)), -b(f(y)), +c(y)].$

or Girard's stars and constellations

Constellation Φ (*n* stars) \downarrow Diagrams (maximal tilings) \downarrow Constellation Ex(Φ)

A reformulation of Robinson's first-order resolution $[g(x), -b(x), \underline{+a(x)}] + [\underline{-a(f(y))}, +c(y)] \longrightarrow [g(f(y)), -b(f(y)), +c(y)].$

Very basic and well-known objects but new model of computation?

Automata and circuits unified

Automata and circuits unified

Automata and circuits unified

Extensible automata.
$$0, 1$$

 q_0 $0 \rightarrow q_1$ $0 \rightarrow q_2$

 $[-i(w), +a(w, q_0)] + [-a(0 \cdot w, q_0), +a(w, q_0)] + [-a(1 \cdot w, q_0), +a(w, q_0)] +$

Automata and circuits unified

Extensible automata.

$$0, 1$$

 q_0
 0
 q_1
 0
 q_2

 $[-i(w), +a(w, q_{0})] + [-a(0 \cdot w, q_{0}), +a(w, q_{0})] + [-a(1 \cdot w, q_{0}), +a(w, q_{0})] + [-a(0 \cdot w, q_{0}), +a(w, q_{1})] +$

Automata and circuits unified

Extensible automata.
$$(0, 1)$$

 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$

 $[-i(w), +a(w, q_0)] + [-a(0 \cdot w, q_0), +a(w, q_0)] + [-a(1 \cdot w, q_0), +a(w, q_0)] +$ $[-a(0 \cdot w, q_0), +a(w, q_1)] + [-a(0 \cdot w, q_1), +a(w, q_2)] +$

Automata and circuits unified

Extensible automata.
$$0, 1$$

 q_0 0 q_1 0 q_2

 $[-i(w), +a(w, q_0)] + [-a(0 \cdot w, q_0), +a(w, q_0)] + [-a(1 \cdot w, q_0), +a(w, q_0)] +$ $[-a(0 \cdot w, q_0), +a(w, q_1)] + [-a(0 \cdot w, q_1), +a(w, q_2)] + [-a(\epsilon, q_2), \text{accept}]$

Automata and circuits unified

Extensible automata.
$$(0, 1)$$

 (q_0) (q_1) (q_2)

 $[-i(w), +a(w, q_0)] + [-a(0 \cdot w, q_0), +a(w, q_0)] + [-a(1 \cdot w, q_0), +a(w, q_0)] +$ $[-a(0 \cdot w, q_0), +a(w, q_1)] + [-a(0 \cdot w, q_1), +a(w, q_2)] + [-a(\epsilon, q_2), \text{accept}]$

Modular circuits.

$$\Phi_{em} = [i_0(1), +c_0(1)]$$

Automata and circuits unified

Extensible automata.
$$(0, 1)$$

 (q_0) (q_1) (q_2)

 $[-i(w), +a(w, q_0)] + [-a(0 \cdot w, q_0), +a(w, q_0)] + [-a(1 \cdot w, q_0), +a(w, q_0)] +$ $[-a(0 \cdot w, q_0), +a(w, q_1)] + [-a(0 \cdot w, q_1), +a(w, q_2)] + [-a(\epsilon, q_2), \text{accept}]$

Modular circuits.

$$\Phi_{em} = [i_0(1), +c_0(1)] + [+c_0(x), +c_1(x), +c_2(x)]$$

Automata and circuits unified

Extensible automata.
$$0, 1$$

 q_0 0 q_1 0 q_2

 $[-i(w), +a(w, q_0)] + [-a(0 \cdot w, q_0), +a(w, q_0)] + [-a(1 \cdot w, q_0), +a(w, q_0)] +$ $[-a(0 \cdot w, q_0), +a(w, q_1)] + [-a(0 \cdot w, q_1), +a(w, q_2)] + [-a(\epsilon, q_2), \text{accept}]$

Modular circuits.

E

$$\Phi_{em} = [i_0(1), +c_0(1)] + [+c_0(x), +c_1(x), +c_2(x)] + [-c_2(x), -not(x, r), +c_3(r)] + [-c_1(x), -c_3(y), -or(x, y, r), +c_4(r)]$$

Automata and circuits unified

Extensible automata.
$$0, 1$$

 q_0 0 q_1 0 q_2

 $[-i(w), +a(w, q_0)] + [-a(0 \cdot w, q_0), +a(w, q_0)] + [-a(1 \cdot w, q_0), +a(w, q_0)] +$ $[-a(0 \cdot w, q_0), +a(w, q_1)] + [-a(0 \cdot w, q_1), +a(w, q_2)] + [-a(\epsilon, q_2), \text{accept}]$

Modular circuits.

E

$$\Phi_{em} = [i_0(1), +c_0(1)] + [+c_0(x), +c_1(x), +c_2(x)] + [-c_2(x), -not(x, r), +c_3(r)] + [-c_1(x), -c_3(y), -or(x, y, r), +c_4(r)] + [-c_4(x), r(x)]$$

Automata and circuits unified

xtensible automata.

$$0, 1$$

 q_0
 0
 q_1
 0
 q_2

 $[-i(w), +a(w, q_0)] + [-a(0 \cdot w, q_0), +a(w, q_0)] + [-a(1 \cdot w, q_0), +a(w, q_0)] +$ $[-a(0 \cdot w, q_0), +a(w, q_1)] + [-a(0 \cdot w, q_1), +a(w, q_2)] + [-a(\epsilon, q_2), \text{accept}]$

Modular circuits.

E

$$\Phi_{em} = [i_0(1), +c_0(1)] + [+c_0(x), +c_1(x), +c_2(x)] + [-c_2(x), -not(x, r), +c_3(r)] + [-c_1(x), -c_3(y), -or(x, y, r), +c_4(r)] + [-c_4(x), r(x)]$$

Information flow inside a structure.

Automata and circuits unified

xtensible automata.

$$0, 1$$

 q_0
 0
 q_1
 0
 q_2
 q_2

 $[-i(w), +a(w, q_0)] + [-a(0 \cdot w, q_0), +a(w, q_0)] + [-a(1 \cdot w, q_0), +a(w, q_0)] +$ $[-a(0 \cdot w, q_0), +a(w, q_1)] + [-a(0 \cdot w, q_1), +a(w, q_2)] + [-a(\epsilon, q_2), \text{accept}]$

Modular circuits.

E

$$\Phi_{em} = [i_0(1), +c_0(1)] + [+c_0(x), +c_1(x), +c_2(x)] + [-c_2(x), -not(x, r), +c_3(r)] + [-c_1(x), -c_3(y), -or(x, y, r), +c_4(r)] + [-c_4(x), r(x)]$$

Information flow inside a structure. Turing-complete.

Cut-elimination for MLL (program execution). (Hyper)graph rewriting.

Cut-elimination for MLL (program execution). (Hyper)graph rewriting.

Cut-elimination for MLL (program execution). (Hyper)graph rewriting.

Transcendental Syntax (actually Gol 3). Tiling of binary stars. $[+p_7(1 \cdot x), +p_7(r \cdot x)]$

Cut-elimination for MLL (program execution). (Hyper)graph rewriting.

Transcendental Syntax (actually Gol 3). Tiling of binary stars.

 $[+p_7(l \cdot x), +p_7(r \cdot x)] + [+p_3(x), +p_8(l \cdot x)] + [+p_8(r \cdot x), +p_6(x)]$

Cut-elimination for MLL (program execution). (Hyper)graph rewriting.

Transcendental Syntax (actually Gol 3). Tiling of binary stars.

 $[+p_7(l \cdot x), +p_7(r \cdot x)] + [+p_3(x), +p_8(l \cdot x)] + [+p_8(r \cdot x), +p_6(x)]$ $[-p_7(x), -p_8(x)].$

Only some proof-structure are "logically correct".

Only some proof-structure are "logically correct".

Danos-Regnier correctness criterion.

Only some proof-structure are "logically correct".

Danos-Regnier correctness criterion.

If Axioms+Test(i) is a tree, the structure is logically correct.

Only some proof-structure are "logically correct".

Danos-Regnier correctness criterion.

If Axioms+Test(i) is a tree, the structure is logically correct.

Transcendental Syntax. Testing as interaction between constellations.

•
$$\operatorname{Ex}(\Phi_{\mathscr{G}}^{\operatorname{ax}} \uplus \Phi_{\mathscr{G}}^{\operatorname{test}(i)}) = [p_1(x), ..., p_2(x)]$$
 with conclusions $\{1, ..., n\}$.

Only some proof-structure are "logically correct".

Danos-Regnier correctness criterion.

If Axioms+Test(i) is a tree, the structure is logically correct.

Transcendental Syntax. Testing as interaction between constellations.

- $\operatorname{Ex}(\Phi_{\mathscr{G}}^{\operatorname{ax}} \boxtimes \Phi_{\mathscr{G}}^{\operatorname{test}(i)}) = [p_1(x), ..., p_2(x)]$ with conclusions $\{1, ..., n\}$.
- $\operatorname{Ex}(\Phi_{\mathscr{G}}^{\operatorname{ax}} \uplus \Phi_{\mathscr{G}}^{\operatorname{test}(i)})$ strongly normalising (MLL+MIX).

Generalising the correctness criterion

Unit testing in programming. A program f "correct" if $f(a_i) = b_i$ for $1 \le i \le n$.

Generalising the correctness criterion

Unit testing in programming. A program f "correct" if $f(a_i) = b_i$ for $1 \le i \le n$. Transcendental testing. A constellation Φ is "correct" if $P(\Phi, \Phi_i)$ for $1 \le i \le n$.

Generalising the correctness criterion

Unit testing in programming. A program f "correct" if $f(a_i) = b_i$ for $1 \le i \le n$. Transcendental testing. A constellation Φ is "correct" if $P(\Phi, \Phi_i)$ for $1 \le i \le n$.

• Induces an orthogonality relation $\Phi \perp \Phi' \iff P(\Phi, \Phi')$ "passing the test".

Generalising the correctness criterion

Unit testing in programming. A program f "correct" if $f(a_i) = b_i$ for $1 \le i \le n$. Transcendental testing. A constellation Φ is "correct" if $P(\Phi, \Phi_i)$ for $1 \le i \le n$.

- Induces an orthogonality relation $\Phi \perp \Phi' \iff P(\Phi, \Phi')$ "passing the test".
- Set of tests Tests and orthogonal Tests^{\perp} (all objects passing the tests).

Generalising the correctness criterion

Unit testing in programming. A program f "correct" if $f(a_i) = b_i$ for $1 \le i \le n$. Transcendental testing. A constellation Φ is "correct" if $P(\Phi, \Phi_i)$ for $1 \le i \le n$.

- Induces an orthogonality relation $\Phi \perp \Phi' \iff P(\Phi, \Phi')$ "passing the test".
- Set of tests Tests and orthogonal Tests^{\perp} (all objects passing the tests).
- Reformulation : a constellation Φ is correct (w.r.t. \bot) $\iff \Phi \in \text{Tests}^{\bot}$.

Generalising the correctness criterion

Unit testing in programming. A program f "correct" if $f(a_i) = b_i$ for $1 \le i \le n$. Transcendental testing. A constellation Φ is "correct" if $P(\Phi, \Phi_i)$ for $1 \le i \le n$.

- Induces an orthogonality relation $\Phi \perp \Phi' \iff P(\Phi, \Phi')$ "passing the test".
- Set of tests Tests and orthogonal Tests^{\perp} (all objects passing the tests).
- Reformulation : a constellation Φ is correct (w.r.t. \bot) $\iff \Phi \in \mathsf{Tests}^{\bot}$.

Primitive typing generalised. Proof theory, type theory, programming languages, ...

Generalising the correctness criterion

Unit testing in programming. A program f "correct" if $f(a_i) = b_i$ for $1 \le i \le n$. Transcendental testing. A constellation Φ is "correct" if $P(\Phi, \Phi_i)$ for $1 \le i \le n$.

- Induces an orthogonality relation $\Phi \perp \Phi' \iff P(\Phi, \Phi')$ "passing the test".
- Set of tests Tests and orthogonal Tests^{\perp} (all objects passing the tests).
- Reformulation : a constellation Φ is correct (w.r.t. \bot) $\iff \Phi \in \mathsf{Tests}^{\bot}$.

Primitive typing generalised. Proof theory, type theory, programming languages, ...

• Type label A with tests Tests(A) (finite and chosen).

Generalising the correctness criterion

Unit testing in programming. A program f "correct" if $f(a_i) = b_i$ for $1 \le i \le n$. Transcendental testing. A constellation Φ is "correct" if $P(\Phi, \Phi_i)$ for $1 \le i \le n$.

- Induces an orthogonality relation $\Phi \perp \Phi' \iff P(\Phi, \Phi')$ "passing the test".
- Set of tests Tests and orthogonal Tests^{\perp} (all objects passing the tests).
- Reformulation : a constellation Φ is correct (w.r.t. \bot) $\iff \Phi \in \mathsf{Tests}^{\bot}$.

Primitive typing generalised. Proof theory, type theory, programming languages, ...

- Type label A with tests Tests(A) (finite and chosen).
- $t : A \iff t \in \text{Tests}(A)^{\perp}$.

Realisability applied to linear logic

Realisability. $A = \{t_1, ..., t_k, ...\}$ (computational behaviour) and typing with $t \in A$.

Realisability applied to linear logic

Realisability applied to linear logic

Realisability. $A = \{t_1, ..., t_k, ...\}$ (computational behaviour) and typing with $t \in A$. **Application of linear logic.** Ludics (Girard), concurrent realisability (Beffara), ...

• Choose a binary relation \perp for "correct interaction" (e.g. program vs environment).

Realisability applied to linear logic

- Choose a binary relation \perp for "correct interaction" (e.g. program vs environment).
- Define $A^{\perp} = \{ \Phi \mid \forall \Phi' \in A, \Phi \perp \Phi' \}$ (linear negation / duality).

Realisability applied to linear logic

- Choose a binary relation \perp for "correct interaction" (e.g. program vs environment).
- Define $A^{\perp} = \{ \Phi \mid \forall \Phi' \in A, \Phi \perp \Phi' \}$ (linear negation / duality).
- A conduct $\iff A = A^{\perp \perp} \iff \exists B. A = B^{\perp}$ (A characterised by tests B).

Realisability applied to linear logic

- Choose a binary relation \perp for "correct interaction" (e.g. program vs environment).
- Define $A^{\perp} = \{ \Phi \mid \forall \Phi' \in A, \Phi \perp \Phi' \}$ (linear negation / duality).
- A conduct $\iff A = A^{\perp \perp} \iff \exists B. A = B^{\perp}$ (A characterised by tests B).
- Assembling conducts : $\mathbf{A} \otimes \mathbf{B} = \{ \Phi_A \uplus \Phi_B \mid \Phi_A \in \mathbf{A}, \Phi_B \in \mathbf{B} \}^{\perp \perp}$.

Realisability applied to linear logic

- Choose a binary relation \perp for "correct interaction" (e.g. program vs environment).
- Define $A^{\perp} = \{ \Phi \mid \forall \Phi' \in A, \Phi \perp \Phi' \}$ (linear negation / duality).
- A conduct $\iff A = A^{\perp \perp} \iff \exists B. A = B^{\perp}$ (A characterised by tests B).
- Assembling conducts : $\mathbf{A} \otimes \mathbf{B} = \{ \Phi_A \uplus \Phi_B \mid \Phi_A \in \mathbf{A}, \Phi_B \in \mathbf{B} \}^{\perp \perp}.$
- Retrieving other connectives : $A \Im B = (A^{\perp} \otimes B^{\perp})^{\perp}$ and $A \multimap B = A^{\perp} \Im B$.

Realisability applied to linear logic

Realisability. $A = \{t_1, ..., t_k, ...\}$ (computational behaviour) and typing with $t \in A$. **Application of linear logic.** Ludics (Girard), concurrent realisability (Beffara), ...

- Choose a binary relation \perp for "correct interaction" (e.g. program vs environment).
- Define $A^{\perp} = \{ \Phi \mid \forall \Phi' \in A, \Phi \perp \Phi' \}$ (linear negation / duality).
- A conduct $\iff A = A^{\perp \perp} \iff \exists B. A = B^{\perp}$ (A characterised by tests B).
- Assembling conducts : $\mathbf{A} \otimes \mathbf{B} = \{ \Phi_A \uplus \Phi_B \mid \Phi_A \in \mathbf{A}, \Phi_B \in \mathbf{B} \}^{\perp \perp}$.
- Retrieving other connectives : $A \Im B = (A^{\perp} \otimes B^{\perp})^{\perp}$ and $A \multimap B = A^{\perp} \Im B$.

The two typing unified. label tests $Tests(A)^{\perp}$ (finite) vs conduct A (potentially infinite).

Realisability applied to linear logic

Realisability. $A = \{t_1, ..., t_k, ...\}$ (computational behaviour) and typing with $t \in A$. **Application of linear logic.** Ludics (Girard), concurrent realisability (Beffara), ...

- Choose a binary relation \perp for "correct interaction" (e.g. program vs environment).
- Define $A^{\perp} = \{ \Phi \mid \forall \Phi' \in A, \Phi \perp \Phi' \}$ (linear negation / duality).
- A conduct $\iff A = A^{\perp \perp} \iff \exists B. A = B^{\perp}$ (A characterised by tests B).
- Assembling conducts : $\mathbf{A} \otimes \mathbf{B} = \{ \Phi_A \uplus \Phi_B \mid \Phi_A \in \mathbf{A}, \Phi_B \in \mathbf{B} \}^{\perp \perp}$.
- Retrieving other connectives : $A \Im B = (A^{\perp} \otimes B^{\perp})^{\perp}$ and $A \multimap B = A^{\perp} \Im B$.

The two typing unified. label tests $Tests(A)^{\perp}$ (finite) vs conduct A (potentially infinite). Adequation. $Tests(A)^{\perp} \subseteq A$.

Realisability applied to linear logic

Realisability. $A = \{t_1, ..., t_k, ...\}$ (computational behaviour) and typing with $t \in A$. **Application of linear logic.** Ludics (Girard), concurrent realisability (Beffara), ...

- Choose a binary relation \perp for "correct interaction" (e.g. program vs environment).
- Define $A^{\perp} = \{ \Phi \mid \forall \Phi' \in A, \Phi \perp \Phi' \}$ (linear negation / duality).
- A conduct $\iff A = A^{\perp \perp} \iff \exists B. A = B^{\perp}$ (A characterised by tests B).
- Assembling conducts : $\mathbf{A} \otimes \mathbf{B} = \{ \Phi_A \uplus \Phi_B \mid \Phi_A \in \mathbf{A}, \Phi_B \in \mathbf{B} \}^{\perp \perp}$.
- Retrieving other connectives : $A \Im B = (A^{\perp} \otimes B^{\perp})^{\perp}$ and $A \multimap B = A^{\perp} \Im B$.

The two typing unified. label tests $\text{Tests}(A)^{\perp}$ (finite) vs conduct A (potentially infinite). Adequation. $\text{Tests}(A)^{\perp} \subseteq A$.

Typing of tests for MLL. Tests(A) $\subseteq A^{\perp}$. Co-existence with correctness witnesses.

Playground

On independent subjects

Computational objects. Automata, logic programs, circuits, tiling models, ...

Computational objects. Automata, logic programs, circuits, tiling models, ... **Two understanding of types.**

• Type labels : specification with finite testing.

Computational objects. Automata, logic programs, circuits, tiling models, ... **Two understanding of types.**

- Type labels : specification with finite testing.
- Interactive types : behavioural analysis.

Computational objects. Automata, logic programs, circuits, tiling models, ... **Two understanding of types.**

- Type labels : specification with finite testing.
- Interactive types : behavioural analysis.

Implicit Computational Complexity (ICC). Capture classes with models.

Computational objects. Automata, logic programs, circuits, tiling models, ... **Two understanding of types.**

- Type labels : specification with finite testing.
- Interactive types : behavioural analysis.

Implicit Computational Complexity (ICC). Capture classes with models. Previous works with flows (= binary stars) by Aubert & Bagnol. Capture of classes **P** and

(N)L (with pointer machines).

Computational objects. Automata, logic programs, circuits, tiling models, ... **Two understanding of types.**

- Type labels : specification with finite testing.
- Interactive types : behavioural analysis.

Implicit Computational Complexity (ICC). Capture classes with models.

Previous works with flows (= binary stars) by Aubert & Bagnol. Capture of classes **P** and **(N)L** (with pointer machines).

Computational objects. Automata, logic programs, circuits, tiling models, ... **Two understanding of types.**

- Type labels : specification with finite testing.
- Interactive types : behavioural analysis.

Implicit Computational Complexity (ICC). Capture classes with models.

Previous works with flows (= binary stars) by Aubert & Bagnol. Capture of classes **P** and **(N)L** (with pointer machines).

Descriptive complexity. Capture classes with formulas.

- **P** and **NP** as classes of formulas (Immerman, Fagin).
- What about finite model theory (Model theory with finite structures/universes)?

IMELL. A, $B ::= X_i | X_i^{\perp} | A \otimes B | A^{\mathcal{B}} B | A \Rightarrow B | (A \Rightarrow B)^{\perp}$ (arbitrary use of A in $A \Rightarrow B$).

. . .

IMELL. A, $B ::= X_i | X_i^{\perp} | A \otimes B | A \stackrel{\mathcal{D}}{\to} B | (A \Rightarrow B)^{\perp}$ (arbitrary use of A in $A \Rightarrow B$). $(\phi_1) (x \cdot y) + p_1(t_1 \cdot (1 \cdot y)) + p_1(t_2 \cdot (r \cdot y))$... • / . . . (φ₂ **Duplication**. **\$**3

IMELL. A, $B ::= X_i | X_i^{\perp} | A \otimes B | A \stackrel{\mathcal{D}}{\to} B | (A \Rightarrow B)^{\perp}$ (arbitrary use of A in $A \Rightarrow B$). -p₁(x · y) $+p_1(t_1 \cdot (1 \cdot y))$ $+p_1(t_2 \cdot (r \cdot y))$ **(\$**1**)** (φ₂ **Duplication**. . . . **\$**3 0.1 Erasure. 0 +(q1) **q**₂ start -

Logical correctness for IMELL. Work in progress. Uses features of stellar resolution.

Logical correctness for IMELL. Work in progress. Uses features of stellar resolution. **Alternative exponentials.** Girard's expansionals $\downarrow A$, $\uparrow A$.

A new model of computation : Stellar Resolution.

A new model of computation : Stellar Resolution.

 \rightarrow Turing complete, generalised circuit-automata.

A new model of computation : Stellar Resolution.

 \rightarrow Turing complete, generalised circuit-automata.

Can naturally encode proof-nets with both cut-elimination and logical correctness.

A new model of computation : Stellar Resolution.

 \rightarrow Turing complete, generalised circuit-automata.

Can naturally encode proof-nets with both cut-elimination and logical correctness. \rightarrow More generally, can speak about "logic" in a broader sense.

A new model of computation : Stellar Resolution.

 \rightarrow Turing complete, generalised circuit-automata.

Can naturally encode proof-nets with both cut-elimination and logical correctness.

- \rightarrow More generally, can speak about "logic" in a broader sense.
- \rightarrow Two understanding of types in the same framework (labels vs behavioural descriptions).

A new model of computation : Stellar Resolution.

 \rightarrow Turing complete, generalised circuit-automata.

Can naturally encode proof-nets with both cut-elimination and logical correctness.

- \rightarrow More generally, can speak about "logic" in a broader sense.
- \rightarrow Two understanding of types in the same framework (labels vs behavioural descriptions).

A lot of connexions yet to be understood : models of DNA computing, automata theory, computational complexity, relationship between logic and computation, complex systems,

A new model of computation : Stellar Resolution.

 \rightarrow Turing complete, generalised circuit-automata.

Can naturally encode proof-nets with both cut-elimination and logical correctness.

- \rightarrow More generally, can speak about "logic" in a broader sense.
- \rightarrow Two understanding of types in the same framework (labels vs behavioural descriptions).

A lot of connexions yet to be understood : models of DNA computing, automata theory, computational complexity, relationship between logic and computation, complex systems, ...

Thank you for listening to my talk.