Transcendental Syntax

The dynamics of logic programs and tilings, applied to Linear Logic

Team LoVe - LIPN Université Sorbone Paris Nord
Boris ENG

Stellar Resolution

From tiles to logic programs

Wang tiles

Hao Wang (1961)
Dominos. $\because \because \because \because \because \because \because \because$

Wang tiles

Hao Wang (1961)
Dominos. $\because \because \because \because \because \because \because \because \square$

Wang tiles

Hao Wang (1961)
Dominos. $\because \because \because \because \because \because \because \because$

$\alpha: Z^{2} \longrightarrow T$, adjacent tiles: sides of matching colours.

Wang tiles

Hao Wang (1961)
Dominos. $\because \because \because \because \because \because \because \because$

Wang set.

Tiling.

$\alpha: Z^{2} \longrightarrow T$, adjacent tiles: sides of matching colours.
Turing-complete. by simulating space-time diagram.

Wang tiles

Hao Wang (1961)
Dominos. $\because \because \because \because \because \because \because \because$

Wang set.

Tiling.

$\alpha: Z^{2} \longrightarrow T$, adjacent tiles : sides of matching colours.
Turing-complete. by simulating space-time diagram.
Generalisations. different matchability (e.g DNA computing), higher dimensions (e.g Z ${ }^{3}$).

Flexible tiles

Nataša Jonoska (around 2000)
Coming from DNA computing.

Flexible tiles

Nataša Jonoska (around 2000)
Coming from DNA computing.
Set of borders H and an involution $\theta: H \rightarrow H$ defining complementary.

Flexible tiles

Nataša Jonoska (around 2000)

Coming from DNA computing.
Set of borders H and an involution $\theta: H \rightarrow H$ defining complementary.

Flexible tiles

Nataša Jonoska (around 2000)

Coming from DNA computing.
Set of borders H and an involution $\theta: H \rightarrow H$ defining complementary.

Flexible tiles

Nataša Jonoska (around 2000)

Coming from DNA computing.
Set of borders H and an involution $\theta: H \rightarrow H$ defining complementary.

Flexible tiles

Nataša Jonoska (around 2000)

Coming from DNA computing.
Set of borders H and an involution $\theta: H \rightarrow H$ defining complementary.

- No geometrical constraint (planarity).

Flexible tiles

Nataša Jonoska (around 2000)

Coming from DNA computing.
Set of borders H and an involution $\theta: H \rightarrow H$ defining complementary.

- No geometrical constraint (planarity).
- Simulates usual "rigid tiles" (on Z^{n}).

Flexible tiles

Nataša Jonoska (around 2000)

Coming from DNA computing.
Set of borders H and an involution $\theta: H \rightarrow H$ defining complementary.

- No geometrical constraint (planarity).
- Simulates usual "rigid tiles" (on Z^{n}).
- Related to NTIME classes.
"Complexity classes for self-assembling flexible tiles" (Jonoska et al.).

Stellar Resolution (background)
 Jean-Yves Girard (2013)

Flexible tiles on first-order terms.

Stellar Resolution (background)
 Jean-Yves Girard (2013)

Flexible tiles on first-order terms.
\rightarrow actually logic programming (first-order disjunctive clauses)

Stellar Resolution (background)
 Jean-Yves Girard (2013)

Flexible tiles on first-order terms.
\rightarrow actually logic programming (first-order disjunctive clauses)

But first, some elementary definitions :
First-order terms. $t, u::=x \mid f\left(t_{1}, \ldots, t_{n}\right)$

Stellar Resolution (background)
 Jean-Yves Girard (2013)

Flexible tiles on first-order terms.
\rightarrow actually logic programming (first-order disjunctive clauses)

But first, some elementary definitions :
First-order terms. $t, u::=x \mid f\left(t_{1}, \ldots, t_{n}\right)$
Unification. $t_{1} \doteq t_{2}$: can we find $\theta:$ Vars \mapsto Terms such that $\theta t_{1}=\theta t_{2}$?

Stellar Resolution (background)
 Jean-Yves Girard (2013)

Flexible tiles on first-order terms.
\rightarrow actually logic programming (first-order disjunctive clauses)

But first, some elementary definitions :
First-order terms. $t, u::=x \mid f\left(t_{1}, \ldots, t_{n}\right)$
Unification. $t_{1} \doteq t_{2}$: can we find $\theta:$ Vars \mapsto Terms such that $\theta t_{1}=\theta t_{2}$?
Matching. up-to-renaming $\alpha t_{1} \doteq t_{2}$

Stellar Resolution (background)
 Jean-Yves Girard (2013)

Flexible tiles on first-order terms.
\rightarrow actually logic programming (first-order disjunctive clauses)

But first, some elementary definitions :
First-order terms. $t, u::=x \mid f\left(t_{1}, \ldots, t_{n}\right)$
Unification. $t_{1} \doteq t_{2}$: can we find $\theta:$ Vars \mapsto Terms such that $\theta t_{1}=\theta t_{2}$?
Matching. up-to-renaming $\alpha t_{1} \doteq t_{2}$
\rightarrow for $x \doteq f(x) \simeq_{\alpha} y \doteq f(x)$ we have $\theta=y \mapsto f(x)$

Stellar Resolution (static part)

Stars and constellations

Borders are polarised first-order term with a head symbol called its colour.

Stellar Resolution (static part)

Stars and constellations

Borders are polarised first-order term with a head symbol called its colour.

Stellar Resolution (static part)

Stars and constellations

Borders are polarised first-order term with a head symbol called its colour.

t and u are matchable with unifier $\theta=\{x \mapsto f(y)\}$.

Stellar Resolution (static part)

Stars and constellations

Borders are polarised first-order term with a head symbol called its colour.

t and u are matchable with unifier $\theta=\{x \mapsto f(y)\}$.
Variables are local.

Stellar Resolution (static part)

Stars and constellations

Borders are polarised first-order term with a head symbol called its colour.

t and u are matchable with unifier $\theta=\{x \mapsto f(y)\}$.
Variables are local.

Tiles	Resolution	Stellar Resolution
	Atom $A=A(t), \neg A(t)$	Ray $r=+a(t),-a(t), t$
Tile	Clause $C=A_{1} \vee \ldots \vee A_{n}$	Star $\phi=\left[r_{1}, \ldots, r_{n}\right]$
Tile set	Program $P=C_{1} \wedge \ldots \wedge C_{m}$	Constellation $\Phi=\phi_{1}+\ldots+\phi_{m}$
Tiling	Inference tree	Diagram

Stellar Resolution (dynamic part / fusion)

Jean-Yves Girard (2013)

Reducing diagrams by fusion of stars pairwise.

Stellar Resolution (dynamic part / fusion)

Jean-Yves Girard (2013)

Reducing diagrams by fusion of stars pairwise.

1. t and u are matchable with unifier $\theta=\{x \mapsto f(y)\}$.

Stellar Resolution (dynamic part / fusion)

Jean-Yves Girard (2013)

Reducing diagrams by fusion of stars pairwise.

1. t and u are matchable with unifier $\theta=\{x \mapsto f(y)\}$.
2. propagation of θ.

Stellar Resolution (dynamic part / fusion)

 Jean-Yves Girard (2013)Reducing diagrams by fusion of stars pairwise.

1. t and u are matchable with unifier $\theta=\{x \mapsto f(y)\}$.
2. propagation of θ.

Stellar Resolution (dynamic part / fusion)

Jean-Yves Girard (2013)

Reducing diagrams by fusion of stars pairwise.

1. t and u are matchable with unifier $\theta=\{x \mapsto f(y)\}$.
2. propagation of θ.
3. destruction of connected rays + merging of stars.

Stellar Resolution (dynamic part / fusion)

Jean-Yves Girard (2013)

Reducing diagrams by fusion of stars pairwise.

1. t and u are matchable with unifier $\theta=\{x \mapsto f(y)\}$.
2. propagation of θ.
3. destruction of connected rays + merging of stars.

Stellar Resolution (dynamic part / execution)

Jean-Yves Girard (2013)

Fusion. diagram/tiling \mapsto star (non-empty)

Stellar Resolution (dynamic part / execution)

Jean-Yves Girard (2013)

Fusion. diagram/tiling \mapsto star (non-empty)
Execution. from a constellation (tile set) Φ :
ϕ_{1}
ϕ_{2}
ϕ_{3}

Stellar Resolution (dynamic part / execution)

Jean-Yves Girard (2013)

Fusion. diagram/tiling \mapsto star (non-empty)
Execution. from a constellation (tile set) Φ :

Stellar Resolution (dynamic part / execution)

Jean-Yves Girard (2013)

Fusion. diagram/tiling \mapsto star (non-empty)
Execution. from a constellation (tile set) Φ :

Stellar Resolution (dynamic part / execution)

Jean-Yves Girard (2013)

Fusion. diagram/tiling \mapsto star (non-empty)
Execution. from a constellation (tile set) Φ :

- We want the diagrams to be saturated (impossible to extend).

Stellar Resolution (dynamic part / execution)

Jean-Yves Girard (2013)

Fusion. diagram/tiling \mapsto star (non-empty)
Execution. from a constellation (tile set) Φ :

- We want the diagrams to be saturated (impossible to extend).
- We also want them to be correct (no unification error).

Stellar Resolution

Few examples

Unary addition by logic programming :

$$
[+\operatorname{add}(0, y, y)]+[-\operatorname{add}(x, y, z),+\operatorname{add}(s(x), y, s(z))]+\left[-\operatorname{add}\left(s^{n}(0), s^{m}(0), r\right), r\right]
$$

Stellar Resolution

Few examples

Unary addition by logic programming :

$$
\begin{aligned}
{[+\operatorname{add}(0, y, y)]+} & {[-\operatorname{add}(x, y, z),+\operatorname{add}(s(x), y, s(z))]+\left[-\operatorname{add}\left(s^{n}(0), s^{m}(0), r\right), r\right] } \\
-\operatorname{add}(0, y, y) ;- & +\operatorname{add}(x, y, z) ;-\operatorname{add}(s(x), y, s(z)) ; \\
& +\operatorname{add}(x, y, z) ;-\operatorname{add}(s(x), y, s(z)) ;-\operatorname{add}\left(s^{2}(0), s^{2}(0), r\right) ; r ;
\end{aligned}
$$

Stellar Resolution

Few examples

Unary addition by logic programming :

$$
[+\operatorname{add}(0, y, y)]+[-\operatorname{add}(x, y, z),+\operatorname{add}(s(x), y, s(z))]+\left[-\operatorname{add}\left(s^{n}(0), s^{m}(0), r\right), r\right]
$$

$-\operatorname{add}(0, y, y) ;-\operatorname{add}(x, y, z) ;-\operatorname{add}\left(s^{2}(x), y, s^{2}(z)\right) ;$

$$
+\operatorname{add}\left(s^{2}(0), s^{2}(0), r\right) ; r ;
$$

Stellar Resolution

Few examples

Unary addition by logic programming :

$$
\begin{aligned}
& {[+\operatorname{add}(0, y, y)]+[-\operatorname{add}(x, y, z),+\operatorname{add}(s(x), y, s(z))]+\left[-\operatorname{add}\left(s^{n}(0), s^{m}(0), r\right), r\right]} \\
& -\operatorname{add}\left(s^{2}(0), y, s^{2}(y)\right) ;-\operatorname{add}\left(s^{2}(0), s^{2}(0), r\right) ; r ;
\end{aligned}
$$

Stellar Resolution

Few examples

Unary addition by logic programming :
$[+\operatorname{add}(0, y, y)]+[-\operatorname{add}(x, y, z),+\operatorname{add}(s(x), y, s(z))]+\left[-\operatorname{add}\left(s^{n}(0), s^{m}(0), r\right), r\right]$
$s^{4}(0) ;$

Stellar Resolution

Few examples

Unary addition by logic programming :

$$
[+\operatorname{add}(0, y, y)]+[-\operatorname{add}(x, y, z),+\operatorname{add}(s(x), y, s(z))]+\left[-\operatorname{add}\left(s^{n}(0), s^{m}(0), r\right), r\right]
$$

$s^{4}(0) ;$
All other diagrams fail, hence $\operatorname{Ex}(\Phi)=\left[s^{4}(0)\right]$.

Stellar Resolution

Few examples

Boolean circuits as hypergraph+dynamics : $X \vee \neg X$

Stellar Resolution

Few examples

Boolean circuits as hypergraph+dynamics : $X \vee \neg X$
$\frac{-\operatorname{val}(x), x(x)}{+c_{1}(x)} ;$

Stellar Resolution

Few examples

Boolean circuits as hypergraph+dynamics : $X \vee \neg X$

$$
\begin{gathered}
\frac{-\operatorname{val}(x), x(x)}{+c_{1}(x)} \\
\text { \} } \\
{\frac{-c_{1}(x)}{+c_{2}(x),+c_{3}(x)}}
\end{gathered}
$$

Stellar Resolution

Few examples

Boolean circuits as hypergraph+dynamics : $X \vee \neg X$

$$
\begin{aligned}
& \frac{-\operatorname{val}(x), x(x)}{+c_{1}(x)} ; \\
& \quad \mid \\
& \frac{-c_{1}(x)}{+c_{2}(x),+c_{3}(x)} ; \quad \frac{-c_{3}(x),-\operatorname{not}(x, r)}{+c_{4}(r)} ;
\end{aligned}
$$

Stellar Resolution

Few examples

Boolean circuits as hypergraph+dynamics : $X \vee \neg X$

$$
\begin{aligned}
& \frac{-\operatorname{val}(x), x(x)}{+c_{1}(x)} ; \\
& \quad \mid \\
& \frac{-c_{1}(x)}{+c_{2}(x),+c_{3}(x)} ; \quad \frac{-c_{3}(x),-\operatorname{not}(x, r)}{+c_{4}(r)} ; \\
& \frac{-c_{2}(x) \quad-c_{3}(y)}{+c_{5}(r)}-\operatorname{or}(x, y, r)
\end{aligned}
$$

Stellar Resolution

Few examples

Boolean circuits as hypergraph+dynamics : $X \vee \neg X$
$\frac{-\operatorname{val}(x), x(x)}{+c_{1}(x)} ;$

Stellar Resolution

Few examples
Boolean circuits as hypergraph+dynamics : $X \vee \neg X$

$$
\begin{aligned}
& \frac{-\operatorname{val}(x), x(x)}{+c_{1}(x)} ; \\
& \frac{-c_{1}(x)}{+c_{2}(x),+c_{3}(x)} ; \quad \frac{-c_{3}(x),-\operatorname{not}(x, r)}{+c_{4}(r)} ; \\
& \frac{-c_{2}(x)-c_{3}(y)-\operatorname{or}(x, y, r)}{+c_{5}(r)} ; \\
& \frac{-c_{5}(r)}{R(r)} ;
\end{aligned}
$$

Stellar Resolution

Few examples

Boolean circuits as hypergraph+dynamics : $X \vee \neg X$
$\frac{-\operatorname{val}(x), x(x)}{+c_{1}(x)} ;$

Stellar Resolution

Few examples

Boolean circuits as hypergraph+dynamics : $X \vee \neg X$

$$
\begin{aligned}
& \frac{-\operatorname{val}(x), x(x)}{+c_{1}(x)} ; \\
& \frac{-c_{1}(x)}{+c_{2}(x),+c_{3}(x)} ; \quad \frac{-c_{3}(x),-\operatorname{not}(x, r)}{+c_{4}(r)} ; \\
& {[+\operatorname{val}(0)]+[+\operatorname{val}(1)]+[+\operatorname{not}(1,0)]+} \\
& {[+\operatorname{not}(0,1)]+[+\operatorname{or}(0,0,0)]+} \\
& {[+\operatorname{or}(0,1,1)]+[+\operatorname{or}(1,0,1)]+} \\
& {[\operatorname{tor}(1,1,1)]} \\
& \frac{-c_{2}(x)-c_{3}(y)}{+c_{5}(r)} \quad-o r(x, y, r) ; \\
& \frac{-c_{5}(r)}{R(r)} \text {; }
\end{aligned}
$$

Stellar Resolution

Few examples

Boolean circuits as hypergraph+dynamics : $X \vee \neg X$

$$
\begin{aligned}
& \frac{-\operatorname{val}(x), X(x)}{+c_{1}(x)} \text {; } \\
& \frac{-c_{1}(x)}{+c_{2}(x),+c_{3}(x)} ; \quad \frac{-c_{3}(x),-\operatorname{not}(x, r)}{+c_{4}(r)} ; \\
& \frac{-c_{2}(x) \quad-c_{3}(y) \quad-o r(x, y, r)}{+c_{5}(r)} ; \\
& {[+\operatorname{val}(0)]+[+\operatorname{val}(1)]+[+\operatorname{not}(1,0)]+} \\
& {[+\operatorname{not}(0,1)]+[+\operatorname{or}(0,0,0)]+} \\
& {[+\operatorname{or}(0,1,1)]+[+\operatorname{or}(1,0,1)]+} \\
& \text { [+or(1, 1, 1)] } \\
& E x(\Phi)=[X(0), R(1)]+[X(1), R(1)] \\
& \frac{-c_{5}(r)}{R(r)} \text {; }
\end{aligned}
$$

Stellar Resolution

Few examples

Boolean circuits as hypergraph+dynamics : $X \vee \neg X$

$$
\begin{aligned}
& \frac{-\operatorname{val}(x), X(x)}{+c_{1}(x)} ; \\
& \frac{-c_{1}(x)}{+c_{2}(x),+c_{3}(x)} ; \\
& \frac{-c_{2}(x) \quad-c_{3}(y)-\operatorname{cor}(x, y, r)}{+c_{5}(r)}
\end{aligned}
$$

$$
[+\operatorname{val}(0)]+[+\operatorname{val}(1)]+[+\operatorname{not}(1,0)]+
$$

$$
[+\operatorname{not}(0,1)]+[+\operatorname{or}(0,0,0)]+
$$

$$
[+\operatorname{or}(0,1,1)]+[+\operatorname{or}(1,0,1)] \quad+
$$

$$
[+\operatorname{or}(1,1,1)]
$$

$$
E x(\Phi)=[X(0), R(1)]+[X(1), R(1)]
$$

Extensible to arithmetic circuits

Transcendental Syntax

Proofs as tilings

Transcendental Syntax

Motivations

Explain (linear) logic from its computational behaviour.

Transcendental Syntax

Motivations

Explain (linear) logic from its computational behaviour. By finite means !

Transcendental Syntax

Motivations

Explain (linear) logic from its computational behaviour. By finite means !
Answers/Analytic adequate computational space : stellar resolution.

Transcendental Syntax

Motivations

Explain (linear) logic from its computational behaviour. By finite means!
Answers/Analytic adequate computational space : stellar resolution.
\rightarrow independant/local interaction

Transcendental Syntax

Motivations

Explain (linear) logic from its computational behaviour. By finite means!
Answers/Analytic adequate computational space : stellar resolution.
\longrightarrow independant/local interaction
ᄂ "large enough"

Transcendental Syntax

Motivations

Explain (linear) logic from its computational behaviour. By finite means!
Answers/Analytic adequate computational space : stellar resolution.
\longrightarrow independant/local interaction
L "large enough"
Questions/Synthetic emergence of logical space : correctness, formulas, use.

Transcendental Syntax

Motivations

Explain (linear) logic from its computational behaviour. By finite means!
Answers/Analytic adequate computational space : stellar resolution.
\longrightarrow independant/local interaction
L "large enough"
Questions/Synthetic emergence of logical space : correctness, formulas, use.
$厶$ what is a "good" interaction? (subjective)

Transcendental Syntax

Motivations

Explain (linear) logic from its computational behaviour. By finite means!
Answers/Analytic adequate computational space : stellar resolution.
\longrightarrow independant/local interaction
L "large enough"
Questions/Synthetic emergence of logical space : correctness, formulas, use.
$厶$ what is a "good" interaction? (subjective)
"This can only be a reconstruction, which means that we roughly know what we are aiming at." (Transcendental Syntax I).

Transcendental Syntax

MLL proof-structures
An alternative representation of proofs as hypergraphs :

Transcendental Syntax

MLL proof-structures
An alternative representation of proofs as hypergraphs:
Formulas/Vertices. $A, B:=X|A \otimes B| A \ngtr B$

Transcendental Syntax

MLL proof-structures
An alternative representation of proofs as hypergraphs:
Formulas/Vertices. $A, B:=X|A \otimes B| A \ngtr B$

Transcendental Syntax

MLL proof-structures
An alternative representation of proofs as hypergraphs:
Formulas/Vertices. $A, B:=X|A \otimes B| A \ngtr B$

Rules/Hyperedges. Axiom
Cut
Tensor
Par

Transcendental Syntax

MLL proof-structures

An alternative representation of proofs as hypergraphs :
Formulas/Vertices. $A, B:=X|A \otimes B| A \ngtr B$

Rules/Hyperedges. Axiom Cut Tensor Par

Transcendental Syntax

MLL proof-structures
An alternative representation of proofs as hypergraphs:
Formulas/Vertices. $A, B:=X|A \otimes B| A \subset B$

Rules/Hyperedges. Axiom Cut Tensor Par

Transcendental Syntax

The computational content of proof-structures

Cut-elimination procedure :

Transcendental Syntax

The computational content of proof-structures

Cut-elimination procedure :

Geometry of Interaction :

Transcendental Syntax

The computational content of proof-structures

Cut-elimination procedure :

Geometry of Interaction :

Transcendental Syntax

Simulation of cut-elimination

Transcendental Syntax

Simulation of cut-elimination

$+c \cdot p_{A_{2}^{\perp}}(x) ;+c \cdot p_{A_{3}}(x) ;$

Transcendental Syntax

The logical content of proof-structures

Only some proof-structures are "logically correct".

Transcendental Syntax
 The logical content of proof-structures

Only some proof-structures are "logically correct".
Danos-Regnier correctness criterion : testing the vehicle against several Tests \in Format.

Transcendental Syntax

The logical content of proof-structures

Only some proof-structures are "logically correct".
Danos-Regnier correctness criterion : testing the vehicle against several Tests \in Format.

Transcendental Syntax

The logical content of proof-structures

Only some proof-structures are "logically correct".
Danos-Regnier correctness criterion : testing the vehicle against several Tests \in Format.

Transcendental Syntax

The logical content of proof-structures

Only some proof-structures are "logically correct".
Danos-Regnier correctness criterion : testing the vehicle against several Tests \in Format.

Transcendental Syntax

Simulation of correctness

Stars \equiv Oriented hyperedges
$+t . p_{A \otimes B}(l x) ;+t . p_{A \perp>{ }_{B} \perp}(l x) ;$

Transcendental Syntax

Simulation of correctness

Stars \equiv Oriented hyperedges

$$
+ \text { t. } p_{A \otimes B}(l x) ;+t . p_{A^{\perp} \wedge_{B^{\perp}}}(l x) ;
$$

$$
+t . p_{A \otimes B}(r x) ;+t . p_{A^{\perp} \not \gamma_{B^{\perp}}}(r x) ;
$$

$\left[\frac{-t . p_{A \oslash B}(l x)}{+c . q_{A}(x)}\right]$;

$$
\left[\frac{-t . p_{A \otimes B}(r x)}{+c \cdot q_{A} \perp(x)}\right] ;
$$

$$
\left[\frac{-t . p_{A} \perp \gamma_{\gamma_{B}} \perp(l x)}{+c \cdot q_{B}(x)}\right] ;
$$

$$
\left[\frac{-t . p_{A \perp} \perp \mathcal{X}_{B} \perp(r x)}{+c . a_{B} \perp(x)}\right] ;
$$

$$
\left[\frac{-c . q_{A}(x)-c . q_{B}(x)}{+c . q_{A \otimes B}(x)}\right] ;
$$

$$
\underline{-c . a_{A} \perp(x)} ; \quad \frac{-c . a_{B} \perp(x)}{+c \cdot a_{A} \perp \gamma B^{\perp} \perp}(x) ;
$$

$$
\left[\frac{-c . q_{A \otimes B}(x)}{p_{A \otimes B}(x)}\right] ;
$$

$$
\left[\frac{-c . q_{A} \perp \gamma_{\gamma_{B}}(x)}{p_{A} \perp_{\gamma_{B}}(x)}\right] ;
$$

Transcendental Syntax

Simulation of correctness
Stars \equiv Oriented hyperedges

Transcendental Syntax

Simulation of correctness

Stars \equiv Oriented hyperedges

Property of the tiling : logically correct iff for all test, the normal form is a single star.

Transcendental Syntax

Typing and formulas

Use of techniques from "linear" realisability.

Transcendental Syntax

Typing and formulas

Use of techniques from "linear" realisability.
Pre-types description of a behaviour $A=\left\{\Phi_{i}\right\}_{i \in \mid}$.

Transcendental Syntax

Typing and formulas

Use of techniques from "linear" realisability.
Pre-types description of a behaviour $A=\left\{\Phi_{i}\right\}_{i \in \mid}$.
Orthogonality Choose a definition of "good interaction" $\Phi \perp \Phi^{\prime}$.

Transcendental Syntax

Typing and formulas

Use of techniques from "linear" realisability.
Pre-types description of a behaviour $A=\left\{\Phi_{i}\right\}_{i \in \mid}$.
Orthogonality Choose a definition of "good interaction" $\Phi \perp \Phi^{\prime}$.
Dual pre-type A^{\perp} set of "good partners" $\left\{\Phi \mid \forall \Phi_{A} \in A, \Phi \perp \Phi_{A}\right\}$.

Transcendental Syntax

Typing and formulas

Use of techniques from "linear" realisability.
Pre-types description of a behaviour $A=\left\{\Phi_{i}\right\}_{i \in \mid}$.
Orthogonality Choose a definition of "good interaction" $\Phi \perp \Phi^{\prime}$.
Dual pre-type A^{\perp} set of "good partners" $\left\{\Phi \mid \forall \Phi_{A} \in A, \Phi \perp \Phi_{A}\right\}$. Types $A=A^{\perp \perp}$ closed interaction.

Transcendental Syntax

Typing and formulas

Use of techniques from "linear" realisability.
Pre-types description of a behaviour $A=\left\{\Phi_{i}\right\}_{i \in I}$.
Orthogonality Choose a definition of "good interaction" $\Phi \perp \Phi^{\prime}$.
Dual pre-type A^{\perp} set of "good partners" $\left\{\Phi \mid \forall \Phi_{A} \in A, \Phi \perp \Phi_{A}\right\}$.
Types $A=A^{\perp \perp}$ closed interaction.
Tensor $A \otimes B:=\left\{\Phi_{A} \uplus \Phi_{B} \mid \Phi_{A} \in A, \Phi_{B} \in B\right\}^{\perp \perp}$.

Transcendental Syntax

Typing and formulas

Use of techniques from "linear" realisability.
Pre-types description of a behaviour $A=\left\{\Phi_{i}\right\}_{i \in I}$.
Orthogonality Choose a definition of "good interaction" $\Phi \perp \Phi^{\prime}$.
Dual pre-type A^{\perp} set of "good partners" $\left\{\Phi \mid \forall \Phi_{A} \in A, \Phi \perp \Phi_{A}\right\}$.
Types $A=A^{\perp \perp}$ closed interaction.
Tensor $A \otimes B:=\left\{\Phi_{A} \uplus \Phi_{B} \mid \Phi_{A} \in A, \Phi_{B} \in B\right\}^{\perp \perp}$.
Other constructions $A \subset B:=\left(A^{\perp} \otimes B^{\perp}\right)^{\perp}, \quad A \multimap B:=A^{\perp} \varnothing B$.

Transcendental Syntax

Typing and formulas

Use of techniques from "linear" realisability.
Pre-types description of a behaviour $A=\left\{\Phi_{i}\right\}_{i \in \mid}$.
Orthogonality Choose a definition of "good interaction" $\Phi \perp \Phi^{\prime}$.
Dual pre-type A^{\perp} set of "good partners" $\left\{\Phi \mid \forall \Phi_{A} \in A, \Phi \perp \Phi_{A}\right\}$.
Types $A=A^{\perp \perp}$ closed interaction.
Tensor $A \otimes B:=\left\{\Phi_{A} \uplus \Phi_{B} \mid \Phi_{A} \in A, \Phi_{B} \in B\right\}^{\perp \perp}$.
Other constructions $A \ngtr B:=\left(A^{\perp} \otimes B^{\perp}\right)^{\perp}, \quad A \multimap B:=A^{\perp} \ngtr B$.
$\Phi_{1} \perp \Phi_{2} \Leftrightarrow\left|\operatorname{Ex}\left(\Phi_{1} \uplus \Phi_{2}\right)\right|=1$: captures MLL formulas.

Transcendental Syntax

Conclusion

- Logic programs and geometric tiling meet

Transcendental Syntax

Conclusion

- Logic programs and geometric tiling meet
- Can be extended to full linear logic and second order

Transcendental Syntax

Conclusion

- Logic programs and geometric tiling meet
- Can be extended to full linear logic and second order
\downarrow exponentials : work in progress

Transcendental Syntax

Conclusion

- Logic programs and geometric tiling meet
- Can be extended to full linear logic and second order
\downarrow exponentials : work in progress
- Reconstruction of first-order logic possible

Transcendental Syntax

Conclusion

- Logic programs and geometric tiling meet
- Can be extended to full linear logic and second order
\downarrow exponentials : work in progress
- Reconstruction of first-order logic possible
\bigsqcup terms/individuals as multiplicative propositions

Transcendental Syntax

Conclusion

- Logic programs and geometric tiling meet
- Can be extended to full linear logic and second order
\checkmark exponentials : work in progress
- Reconstruction of first-order logic possible
\square terms/individuals as multiplicative propositions
\llcorner equality as linear equivalence (not predicate!)

Transcendental Syntax

Conclusion

- Logic programs and geometric tiling meet
- Can be extended to full linear logic and second order
\checkmark exponentials : work in progress
- Reconstruction of first-order logic possible
\square terms/individuals as multiplicative propositions
\llcorner equality as linear equivalence (not predicate!)
- Logic programs and functional programs, unified ?

Future and related works

(actually a call for help)

Hypergraphings

Hypergraphs with dynamics
Computation with hypergraphs :

Model	Vertices	Hyperedges
Boolean circuits	addresses	gates
Proof-nets	addresses	rules
Constellations	terms	stars
Automata	states	transitions

Hypergraphings

Hypergraphs with dynamics
Computation with hypergraphs :

Model	Vertices	Hyperedges
Boolean circuits	addresses	gates
Proof-nets	addresses	rules
Constellations	terms	stars
Automata	states	transitions

\checkmark interaction of hypergraphs + execution.

Hypergraphings

Hypergraphs with dynamics
Computation with hypergraphs :

Model	Vertices	Hyperedges
Boolean circuits	addresses	gates
Proof-nets	addresses	rules
Constellations	terms	stars
Automata	states	transitions

4 interaction of hypergraphs + execution.
4 generalisation of Seiller's Graphings.

Hypergraphings
 Hypergraphs with dynamics

Computation with hypergraphs :

Model	Vertices	Hyperedges
Boolean circuits	addresses	gates
Proof-nets	addresses	rules
Constellations	terms	stars
Automata	states	transitions

\bigsqcup interaction of hypergraphs + execution.
4 generalisation of Seiller's Graphings.
\downarrow categorical framework ? Operads, string diagrams, hypergraph categories, frobenius algebras, ...

Stellar Resolution and Automata Theory

Dependency graph $\mathfrak{D}(\Phi)$: relations of matchability within a constellation Φ.
$-\operatorname{add}(0, y, y) ; \longrightarrow+\operatorname{add}(x, y, z) ;-\operatorname{add}(s(x), y, s(z)) ; \longrightarrow \quad \operatorname{add}\left(s^{n}(0), s^{m}(0), r\right) ; r ;$

Stellar Resolution and Automata Theory

Dependency graph $\mathfrak{D}(\Phi)$: relations of matchability within a constellation Φ.
$-\operatorname{add}(0, y, y) ;-\operatorname{add}(x, y, z) ;-\operatorname{add}(s(x), y, s(z)) ; \square+\operatorname{add}\left(s^{n}(0), s^{m}(0), r\right) ; r ;$

Diagram (formally) : graph homomorphism $\delta: G \rightarrow \mathfrak{D}(\Phi)$.

$$
\begin{aligned}
-\operatorname{add}(0, y, y) ;- & +\operatorname{add}(x, y, z) ;-\operatorname{add}(s(x), y, s(z)) ; \\
& +\operatorname{add} \overline{(x, y, z) ;-\operatorname{add}(s(x)}, y, s(z)) ;-\operatorname{add}\left(s^{2}(0), s^{2}(0), r\right) ; r ;
\end{aligned}
$$

Run in finite automata : path \mapsto state graph

Stellar Resolution and Automata Theory

Dependency graph $\mathfrak{D}(\Phi)$: relations of matchability within a constellation Φ.
$-\operatorname{add}(0, y, y) ;-\operatorname{add}(x, y, z) ;-\operatorname{add}(s(x), y, s(z)) ; \square+\operatorname{add}\left(s^{n}(0), s^{m}(0), r\right) ; r ;$

Diagram (formally) : graph homomorphism $\delta: G \rightarrow \mathfrak{D}(\Phi)$.

$$
\begin{aligned}
-\operatorname{add}(0, y, y) ;- & +\operatorname{add}(x, y, z) ;-\operatorname{add}(s(x), y, s(z)) ; \\
& +\operatorname{add} \overline{(x, y, z) ;-\operatorname{add}(s(x)}, y, s(z)) ;-+\operatorname{add}\left(s^{2}(0), s^{2}(0), r\right) ; r
\end{aligned}
$$

Run in finite automata : path \mapsto state graph
\longrightarrow we are interested in reaching finale state.

Stellar Resolution and Automata Theory

Dependency graph $\mathfrak{D}(\Phi)$: relations of matchability within a constellation Φ.
$-\operatorname{add}(0, y, y) ;-\operatorname{add}(x, y, z) ;-\operatorname{add}(s(x), y, s(z)) ; \square+\operatorname{add}\left(s^{n}(0), s^{m}(0), r\right) ; r ;$

Diagram (formally) : graph homomorphism $\delta: G \rightarrow \mathfrak{D}(\Phi)$.

$$
\begin{aligned}
-\operatorname{add}(0, y, y) ;- & +\operatorname{add}(x, y, z) ;-\operatorname{add}(s(x), y, s(z)) ; \\
& +\operatorname{add}(x, y, z) ;-\operatorname{add}(s(x), y, s(z)) ;-\operatorname{add}\left(s^{2}(0), s^{2}(0), r\right) ; r ;
\end{aligned}
$$

Run in finite automata : path \mapsto state graph
4 we are interested in reaching finale state.
\square automaton for stellar execution?

