
Transcendental Syntax
The dynamics of logic programs and tilings, applied to Linear Logic

Team LoVe – LIPN Université Sorbone Paris Nord

Boris ENG

Stellar Resolution
From tiles to logic programs

Wang tiles
Hao Wang (1961)

Dominos.

Wang set.

Tiling. α : Z2 −→ T, adjacent tiles : sides of matching colours.

Turing-complete. by simulating space-time diagram.

Generalisations. different matchability (e.g DNA computing), higher dimensions (e.g Z3).

1/18

Wang tiles
Hao Wang (1961)

Dominos.

Wang set.

Tiling. α : Z2 −→ T, adjacent tiles : sides of matching colours.

Turing-complete. by simulating space-time diagram.

Generalisations. different matchability (e.g DNA computing), higher dimensions (e.g Z3).

1/18

Wang tiles
Hao Wang (1961)

Dominos.

Wang set.

Tiling. α : Z2 −→ T, adjacent tiles : sides of matching colours.

Turing-complete. by simulating space-time diagram.

Generalisations. different matchability (e.g DNA computing), higher dimensions (e.g Z3).

1/18

Wang tiles
Hao Wang (1961)

Dominos.

Wang set.

Tiling. α : Z2 −→ T, adjacent tiles : sides of matching colours.

Turing-complete. by simulating space-time diagram.

Generalisations. different matchability (e.g DNA computing), higher dimensions (e.g Z3).

1/18

Wang tiles
Hao Wang (1961)

Dominos.

Wang set.

Tiling. α : Z2 −→ T, adjacent tiles : sides of matching colours.

Turing-complete. by simulating space-time diagram.

Generalisations. different matchability (e.g DNA computing), higher dimensions (e.g Z3).
1/18

Flexible tiles
Nataša Jonoska (around 2000)

Coming from DNA computing.

Set of borders H and an involution θ : H→ H defining complementary.

t1h1
h2

h3

t2
θ(h2)

h4

• No geometrical constraint (planarity).

• Simulates usual "rigid tiles" (on Zn).

• Related to NTIME classes.
"Complexity classes for self-assembling flexible tiles" (Jonoska et al.).

2/18

Flexible tiles
Nataša Jonoska (around 2000)

Coming from DNA computing.
Set of borders H and an involution θ : H→ H defining complementary.

t1h1
h2

h3

t2
θ(h2)

h4

• No geometrical constraint (planarity).

• Simulates usual "rigid tiles" (on Zn).

• Related to NTIME classes.
"Complexity classes for self-assembling flexible tiles" (Jonoska et al.).

2/18

Flexible tiles
Nataša Jonoska (around 2000)

Coming from DNA computing.
Set of borders H and an involution θ : H→ H defining complementary.

t1h1
h2

h3

t2
θ(h2)

h4

• No geometrical constraint (planarity).

• Simulates usual "rigid tiles" (on Zn).

• Related to NTIME classes.
"Complexity classes for self-assembling flexible tiles" (Jonoska et al.).

2/18

Flexible tiles
Nataša Jonoska (around 2000)

Coming from DNA computing.
Set of borders H and an involution θ : H→ H defining complementary.

t1h1
h2

h3

t2
θ(h2)

h4

• No geometrical constraint (planarity).

• Simulates usual "rigid tiles" (on Zn).

• Related to NTIME classes.
"Complexity classes for self-assembling flexible tiles" (Jonoska et al.).

2/18

Flexible tiles
Nataša Jonoska (around 2000)

Coming from DNA computing.
Set of borders H and an involution θ : H→ H defining complementary.

t1h1
h2

h3

t2
θ(h2)

h4

• No geometrical constraint (planarity).

• Simulates usual "rigid tiles" (on Zn).

• Related to NTIME classes.
"Complexity classes for self-assembling flexible tiles" (Jonoska et al.).

2/18

Flexible tiles
Nataša Jonoska (around 2000)

Coming from DNA computing.
Set of borders H and an involution θ : H→ H defining complementary.

t1h1
h2

h3

t2
θ(h2)

h4

• No geometrical constraint (planarity).

• Simulates usual "rigid tiles" (on Zn).

• Related to NTIME classes.
"Complexity classes for self-assembling flexible tiles" (Jonoska et al.).

2/18

Flexible tiles
Nataša Jonoska (around 2000)

Coming from DNA computing.
Set of borders H and an involution θ : H→ H defining complementary.

t1h1
h2

h3

t2
θ(h2)

h4

• No geometrical constraint (planarity).

• Simulates usual "rigid tiles" (on Zn).

• Related to NTIME classes.
"Complexity classes for self-assembling flexible tiles" (Jonoska et al.).

2/18

Flexible tiles
Nataša Jonoska (around 2000)

Coming from DNA computing.
Set of borders H and an involution θ : H→ H defining complementary.

t1h1
h2

h3

t2
θ(h2)

h4

• No geometrical constraint (planarity).

• Simulates usual "rigid tiles" (on Zn).

• Related to NTIME classes.
"Complexity classes for self-assembling flexible tiles" (Jonoska et al.). 2/18

Stellar Resolution (background)
Jean-Yves Girard (2013)

Flexible tiles on first-order terms.

�

actually logic programming (first-order disjunctive clauses)

But first, some elementary definitions :

First-order terms. t, u ::= x | f(t1, ..., tn)

Unification. t1
.
= t2 : can we find θ : Vars 7→ Terms such that θt1 = θt2 ?

Matching. up-to-renaming αt1
.
= t2

�

for x .
= f(x) 'α y

.
= f(x) we have θ = y 7→ f(x)

3/18

Stellar Resolution (background)
Jean-Yves Girard (2013)

Flexible tiles on first-order terms.

�

actually logic programming (first-order disjunctive clauses)

But first, some elementary definitions :

First-order terms. t, u ::= x | f(t1, ..., tn)

Unification. t1
.
= t2 : can we find θ : Vars 7→ Terms such that θt1 = θt2 ?

Matching. up-to-renaming αt1
.
= t2

�

for x .
= f(x) 'α y

.
= f(x) we have θ = y 7→ f(x)

3/18

Stellar Resolution (background)
Jean-Yves Girard (2013)

Flexible tiles on first-order terms.

�

actually logic programming (first-order disjunctive clauses)

But first, some elementary definitions :

First-order terms. t, u ::= x | f(t1, ..., tn)

Unification. t1
.
= t2 : can we find θ : Vars 7→ Terms such that θt1 = θt2 ?

Matching. up-to-renaming αt1
.
= t2

�

for x .
= f(x) 'α y

.
= f(x) we have θ = y 7→ f(x)

3/18

Stellar Resolution (background)
Jean-Yves Girard (2013)

Flexible tiles on first-order terms.

�

actually logic programming (first-order disjunctive clauses)

But first, some elementary definitions :

First-order terms. t, u ::= x | f(t1, ..., tn)

Unification. t1
.
= t2 : can we find θ : Vars 7→ Terms such that θt1 = θt2 ?

Matching. up-to-renaming αt1
.
= t2

�

for x .
= f(x) 'α y

.
= f(x) we have θ = y 7→ f(x)

3/18

Stellar Resolution (background)
Jean-Yves Girard (2013)

Flexible tiles on first-order terms.

�

actually logic programming (first-order disjunctive clauses)

But first, some elementary definitions :

First-order terms. t, u ::= x | f(t1, ..., tn)

Unification. t1
.
= t2 : can we find θ : Vars 7→ Terms such that θt1 = θt2 ?

Matching. up-to-renaming αt1
.
= t2

�

for x .
= f(x) 'α y

.
= f(x) we have θ = y 7→ f(x)

3/18

Stellar Resolution (background)
Jean-Yves Girard (2013)

Flexible tiles on first-order terms.

�

actually logic programming (first-order disjunctive clauses)

But first, some elementary definitions :

First-order terms. t, u ::= x | f(t1, ..., tn)

Unification. t1
.
= t2 : can we find θ : Vars 7→ Terms such that θt1 = θt2 ?

Matching. up-to-renaming αt1
.
= t2

�

for x .
= f(x) 'α y

.
= f(x) we have θ = y 7→ f(x)

3/18

Stellar Resolution (static part)
Stars and constellations

Borders are polarised first-order term with a head symbol called its colour.

ϕ1g(x)
+a(x)

−b(x)

ϕ2

−a(f(y)) +c(y) t and u are matchable with
unifier θ = {x 7→ f(y)}.
Variables are local.

Tiles Resolution Stellar Resolution
Atom A = A(t),¬A(t) Ray r = +a(t),−a(t), t

Tile Clause C = A1 ∨ ...∨ An Star ϕ = [r1, ..., rn]
Tile set Program P = C1 ∧ ...∧ Cm Constellation  = ϕ1 + ...+ ϕm

Tiling Inference tree Diagram

4/18

Stellar Resolution (static part)
Stars and constellations

Borders are polarised first-order term with a head symbol called its colour.

ϕ1g(x)
+a(x)

−b(x)

ϕ2

−a(f(y)) +c(y)

t and u are matchable with
unifier θ = {x 7→ f(y)}.
Variables are local.

Tiles Resolution Stellar Resolution
Atom A = A(t),¬A(t) Ray r = +a(t),−a(t), t

Tile Clause C = A1 ∨ ...∨ An Star ϕ = [r1, ..., rn]
Tile set Program P = C1 ∧ ...∧ Cm Constellation  = ϕ1 + ...+ ϕm

Tiling Inference tree Diagram

4/18

Stellar Resolution (static part)
Stars and constellations

Borders are polarised first-order term with a head symbol called its colour.

ϕ1g(x)
+a(x)

−b(x)

ϕ2

−a(f(y)) +c(y) t and u are matchable with
unifier θ = {x 7→ f(y)}.

Variables are local.

Tiles Resolution Stellar Resolution
Atom A = A(t),¬A(t) Ray r = +a(t),−a(t), t

Tile Clause C = A1 ∨ ...∨ An Star ϕ = [r1, ..., rn]
Tile set Program P = C1 ∧ ...∧ Cm Constellation  = ϕ1 + ...+ ϕm

Tiling Inference tree Diagram

4/18

Stellar Resolution (static part)
Stars and constellations

Borders are polarised first-order term with a head symbol called its colour.

ϕ1g(x)
+a(x)

−b(x)

ϕ2

−a(f(y)) +c(y) t and u are matchable with
unifier θ = {x 7→ f(y)}.
Variables are local.

Tiles Resolution Stellar Resolution
Atom A = A(t),¬A(t) Ray r = +a(t),−a(t), t

Tile Clause C = A1 ∨ ...∨ An Star ϕ = [r1, ..., rn]
Tile set Program P = C1 ∧ ...∧ Cm Constellation  = ϕ1 + ...+ ϕm

Tiling Inference tree Diagram

4/18

Stellar Resolution (static part)
Stars and constellations

Borders are polarised first-order term with a head symbol called its colour.

ϕ1g(x)
+a(x)

−b(x)

ϕ2

−a(f(y)) +c(y) t and u are matchable with
unifier θ = {x 7→ f(y)}.
Variables are local.

Tiles Resolution Stellar Resolution
Atom A = A(t),¬A(t) Ray r = +a(t),−a(t), t

Tile Clause C = A1 ∨ ...∨ An Star ϕ = [r1, ..., rn]
Tile set Program P = C1 ∧ ...∧ Cm Constellation  = ϕ1 + ...+ ϕm

Tiling Inference tree Diagram
4/18

Stellar Resolution (dynamic part / fusion)
Jean-Yves Girard (2013)

Reducing diagrams by fusion of stars pairwise.

1. t and u are matchable with unifier θ = {x 7→ f(y)}.

2. propagation of θ.

3. destruction of connected rays + merging of stars.

5/18

Stellar Resolution (dynamic part / fusion)
Jean-Yves Girard (2013)

Reducing diagrams by fusion of stars pairwise.

ϕ1g(x)
+a(x)

−b(x)

ϕ2

−a(f(y))
+c(y)

1. t and u are matchable with unifier θ = {x 7→ f(y)}.

2. propagation of θ.

3. destruction of connected rays + merging of stars.

5/18

Stellar Resolution (dynamic part / fusion)
Jean-Yves Girard (2013)

Reducing diagrams by fusion of stars pairwise.

ϕ1g(x)
+a(x)

−b(x)

ϕ2

−a(f(y))
+c(y)

1. t and u are matchable with unifier θ = {x 7→ f(y)}.

2. propagation of θ.

3. destruction of connected rays + merging of stars.

5/18

Stellar Resolution (dynamic part / fusion)
Jean-Yves Girard (2013)

Reducing diagrams by fusion of stars pairwise.

ϕ1g(f(y))
+a(x)

−b(f(y))

ϕ2

−a(f(y))
+c(y)

1. t and u are matchable with unifier θ = {x 7→ f(y)}.

2. propagation of θ.

3. destruction of connected rays + merging of stars.

5/18

Stellar Resolution (dynamic part / fusion)
Jean-Yves Girard (2013)

Reducing diagrams by fusion of stars pairwise.

ϕ1g(f(y))
+a(x)

−b(f(y))

ϕ2

−a(f(y))
+c(y)

1. t and u are matchable with unifier θ = {x 7→ f(y)}.

2. propagation of θ.

3. destruction of connected rays + merging of stars.

5/18

Stellar Resolution (dynamic part / fusion)
Jean-Yves Girard (2013)

Reducing diagrams by fusion of stars pairwise.

ϕ1 ∪ ϕ2g(f(y))
+c(y)

−b(f(y))

1. t and u are matchable with unifier θ = {x 7→ f(y)}.

2. propagation of θ.

3. destruction of connected rays + merging of stars.
5/18

Stellar Resolution (dynamic part / execution)
Jean-Yves Girard (2013)

Fusion. diagram/tiling 7→ star (non-empty)

Execution. from a constellation (tile set)  :
ϕ1

ϕ2

ϕ3

generation
−−−−−→

ϕ1

ϕ2

ϕ3

. . .

ϕ1

ϕ2

ϕ3

fusions−−−→ Ex() = ψ1 + ...+ ψn

• We want the diagrams to be saturated (impossible to extend).

• We also want them to be correct (no unification error).

6/18

Stellar Resolution (dynamic part / execution)
Jean-Yves Girard (2013)

Fusion. diagram/tiling 7→ star (non-empty)

Execution. from a constellation (tile set)  :
ϕ1

ϕ2

ϕ3

generation
−−−−−→

ϕ1

ϕ2

ϕ3

. . .

ϕ1

ϕ2

ϕ3

fusions−−−→ Ex() = ψ1 + ...+ ψn

• We want the diagrams to be saturated (impossible to extend).

• We also want them to be correct (no unification error).

6/18

Stellar Resolution (dynamic part / execution)
Jean-Yves Girard (2013)

Fusion. diagram/tiling 7→ star (non-empty)

Execution. from a constellation (tile set)  :
ϕ1

ϕ2

ϕ3

generation
−−−−−→

ϕ1

ϕ2

ϕ3

. . .

ϕ1

ϕ2

ϕ3

fusions−−−→ Ex() = ψ1 + ...+ ψn

• We want the diagrams to be saturated (impossible to extend).

• We also want them to be correct (no unification error).

6/18

Stellar Resolution (dynamic part / execution)
Jean-Yves Girard (2013)

Fusion. diagram/tiling 7→ star (non-empty)

Execution. from a constellation (tile set)  :
ϕ1

ϕ2

ϕ3

generation
−−−−−→

ϕ1

ϕ2

ϕ3

. . .

ϕ1

ϕ2

ϕ3

fusions−−−→ Ex() = ψ1 + ...+ ψn

• We want the diagrams to be saturated (impossible to extend).

• We also want them to be correct (no unification error).

6/18

Stellar Resolution (dynamic part / execution)
Jean-Yves Girard (2013)

Fusion. diagram/tiling 7→ star (non-empty)

Execution. from a constellation (tile set)  :
ϕ1

ϕ2

ϕ3

generation
−−−−−→

ϕ1

ϕ2

ϕ3

. . .

ϕ1

ϕ2

ϕ3

fusions−−−→ Ex() = ψ1 + ...+ ψn

• We want the diagrams to be saturated (impossible to extend).

• We also want them to be correct (no unification error).

6/18

Stellar Resolution (dynamic part / execution)
Jean-Yves Girard (2013)

Fusion. diagram/tiling 7→ star (non-empty)

Execution. from a constellation (tile set)  :
ϕ1

ϕ2

ϕ3

generation
−−−−−→

ϕ1

ϕ2

ϕ3

. . .

ϕ1

ϕ2

ϕ3

fusions−−−→ Ex() = ψ1 + ...+ ψn

• We want the diagrams to be saturated (impossible to extend).

• We also want them to be correct (no unification error).
6/18

Stellar Resolution
Few examples

Unary addition by logic programming :

[+add(0, y, y)] + [−add(x, y, z),+add(s(x), y, s(z))] + [−add(sn(0), sm(0), r), r]

7/18

Stellar Resolution
Few examples

Unary addition by logic programming :

[+add(0, y, y)] + [−add(x, y, z),+add(s(x), y, s(z))] + [−add(sn(0), sm(0), r), r]

−add(0, y, y); +add(x, y, z); −add(s(x), y, s(z));

+add(x, y, z); −add(s(x), y, s(z)); +add(s2(0), s2(0), r); r;

7/18

Stellar Resolution
Few examples

Unary addition by logic programming :

[+add(0, y, y)] + [−add(x, y, z),+add(s(x), y, s(z))] + [−add(sn(0), sm(0), r), r]

−add(0, y, y); +add(x, y, z); −add(s2(x), y, s2(z));

+add(s2(0), s2(0), r); r;

7/18

Stellar Resolution
Few examples

Unary addition by logic programming :

[+add(0, y, y)] + [−add(x, y, z),+add(s(x), y, s(z))] + [−add(sn(0), sm(0), r), r]

−add(s2(0), y, s2(y)); +add(s2(0), s2(0), r); r;

7/18

Stellar Resolution
Few examples

Unary addition by logic programming :

[+add(0, y, y)] + [−add(x, y, z),+add(s(x), y, s(z))] + [−add(sn(0), sm(0), r), r]

s4(0);

7/18

Stellar Resolution
Few examples

Unary addition by logic programming :

[+add(0, y, y)] + [−add(x, y, z),+add(s(x), y, s(z))] + [−add(sn(0), sm(0), r), r]

s4(0);

All other diagrams fail, hence Ex() = [s4(0)].

7/18

Stellar Resolution
Few examples

Boolean circuits as hypergraph+dynamics : X∨¬X

−val(x),X(x)
+c1(x)

;

−c1(x)
+c2(x),+c3(x)

; −c3(x),−not(x,r)
+c4(r)

;

−c2(x) −c3(y) −or(x,y,r)
+c5(r)

;

−c5(r)
R(r) ;

[+val(0)] + [+val(1)] + [+not(1,0)] +
[+not(0, 1)] + [+or(0,0,0)] +
[+or(0, 1, 1)] + [+or(1,0, 1)] +
[+or(1, 1, 1)]

Ex() = [X(0),R(1)] + [X(1),R(1)]
Extensible to arithmetic circuits

8/18

Stellar Resolution
Few examples

Boolean circuits as hypergraph+dynamics : X∨¬X
−val(x),X(x)
+c1(x)

;

−c1(x)
+c2(x),+c3(x)

; −c3(x),−not(x,r)
+c4(r)

;

−c2(x) −c3(y) −or(x,y,r)
+c5(r)

;

−c5(r)
R(r) ;

[+val(0)] + [+val(1)] + [+not(1,0)] +
[+not(0, 1)] + [+or(0,0,0)] +
[+or(0, 1, 1)] + [+or(1,0, 1)] +
[+or(1, 1, 1)]

Ex() = [X(0),R(1)] + [X(1),R(1)]
Extensible to arithmetic circuits

8/18

Stellar Resolution
Few examples

Boolean circuits as hypergraph+dynamics : X∨¬X
−val(x),X(x)
+c1(x)

;

−c1(x)
+c2(x),+c3(x)

;

−c3(x),−not(x,r)
+c4(r)

;

−c2(x) −c3(y) −or(x,y,r)
+c5(r)

;

−c5(r)
R(r) ;

[+val(0)] + [+val(1)] + [+not(1,0)] +
[+not(0, 1)] + [+or(0,0,0)] +
[+or(0, 1, 1)] + [+or(1,0, 1)] +
[+or(1, 1, 1)]

Ex() = [X(0),R(1)] + [X(1),R(1)]
Extensible to arithmetic circuits

8/18

Stellar Resolution
Few examples

Boolean circuits as hypergraph+dynamics : X∨¬X
−val(x),X(x)
+c1(x)

;

−c1(x)
+c2(x),+c3(x)

; −c3(x),−not(x,r)
+c4(r)

;

−c2(x) −c3(y) −or(x,y,r)
+c5(r)

;

−c5(r)
R(r) ;

[+val(0)] + [+val(1)] + [+not(1,0)] +
[+not(0, 1)] + [+or(0,0,0)] +
[+or(0, 1, 1)] + [+or(1,0, 1)] +
[+or(1, 1, 1)]

Ex() = [X(0),R(1)] + [X(1),R(1)]
Extensible to arithmetic circuits

8/18

Stellar Resolution
Few examples

Boolean circuits as hypergraph+dynamics : X∨¬X
−val(x),X(x)
+c1(x)

;

−c1(x)
+c2(x),+c3(x)

; −c3(x),−not(x,r)
+c4(r)

;

−c2(x) −c3(y) −or(x,y,r)
+c5(r)

;

−c5(r)
R(r) ;

[+val(0)] + [+val(1)] + [+not(1,0)] +
[+not(0, 1)] + [+or(0,0,0)] +
[+or(0, 1, 1)] + [+or(1,0, 1)] +
[+or(1, 1, 1)]

Ex() = [X(0),R(1)] + [X(1),R(1)]
Extensible to arithmetic circuits

8/18

Stellar Resolution
Few examples

Boolean circuits as hypergraph+dynamics : X∨¬X
−val(x),X(x)
+c1(x)

;

−c1(x)
+c2(x),+c3(x)

; −c3(x),−not(x,r)
+c4(r)

;

−c2(x) −c3(y) −or(x,y,r)
+c5(r)

;

−c5(r)
R(r) ;

[+val(0)] + [+val(1)] + [+not(1,0)] +
[+not(0, 1)] + [+or(0,0,0)] +
[+or(0, 1, 1)] + [+or(1,0, 1)] +
[+or(1, 1, 1)]

Ex() = [X(0),R(1)] + [X(1),R(1)]
Extensible to arithmetic circuits

8/18

Stellar Resolution
Few examples

Boolean circuits as hypergraph+dynamics : X∨¬X
−val(x),X(x)
+c1(x)

;

−c1(x)
+c2(x),+c3(x)

; −c3(x),−not(x,r)
+c4(r)

;

−c2(x) −c3(y) −or(x,y,r)
+c5(r)

;

−c5(r)
R(r) ;

[+val(0)] + [+val(1)] + [+not(1,0)] +
[+not(0, 1)] + [+or(0,0,0)] +
[+or(0, 1, 1)] + [+or(1,0, 1)] +
[+or(1, 1, 1)]

Ex() = [X(0),R(1)] + [X(1),R(1)]
Extensible to arithmetic circuits

8/18

Stellar Resolution
Few examples

Boolean circuits as hypergraph+dynamics : X∨¬X
−val(x),X(x)
+c1(x)

;

−c1(x)
+c2(x),+c3(x)

; −c3(x),−not(x,r)
+c4(r)

;

−c2(x) −c3(y) −or(x,y,r)
+c5(r)

;

−c5(r)
R(r) ;

[+val(0)] + [+val(1)] + [+not(1,0)] +
[+not(0, 1)] + [+or(0,0,0)] +
[+or(0, 1, 1)] + [+or(1,0, 1)] +
[+or(1, 1, 1)]

Ex() = [X(0),R(1)] + [X(1),R(1)]
Extensible to arithmetic circuits

8/18

Stellar Resolution
Few examples

Boolean circuits as hypergraph+dynamics : X∨¬X
−val(x),X(x)
+c1(x)

;

−c1(x)
+c2(x),+c3(x)

; −c3(x),−not(x,r)
+c4(r)

;

−c2(x) −c3(y) −or(x,y,r)
+c5(r)

;

−c5(r)
R(r) ;

[+val(0)] + [+val(1)] + [+not(1,0)] +
[+not(0, 1)] + [+or(0,0,0)] +
[+or(0, 1, 1)] + [+or(1,0, 1)] +
[+or(1, 1, 1)]

Ex() = [X(0),R(1)] + [X(1),R(1)]
Extensible to arithmetic circuits

8/18

Stellar Resolution
Few examples

Boolean circuits as hypergraph+dynamics : X∨¬X
−val(x),X(x)
+c1(x)

;

−c1(x)
+c2(x),+c3(x)

; −c3(x),−not(x,r)
+c4(r)

;

−c2(x) −c3(y) −or(x,y,r)
+c5(r)

;

−c5(r)
R(r) ;

[+val(0)] + [+val(1)] + [+not(1,0)] +
[+not(0, 1)] + [+or(0,0,0)] +
[+or(0, 1, 1)] + [+or(1,0, 1)] +
[+or(1, 1, 1)]

Ex() = [X(0),R(1)] + [X(1),R(1)]

Extensible to arithmetic circuits

8/18

Stellar Resolution
Few examples

Boolean circuits as hypergraph+dynamics : X∨¬X
−val(x),X(x)
+c1(x)

;

−c1(x)
+c2(x),+c3(x)

; −c3(x),−not(x,r)
+c4(r)

;

−c2(x) −c3(y) −or(x,y,r)
+c5(r)

;

−c5(r)
R(r) ;

[+val(0)] + [+val(1)] + [+not(1,0)] +
[+not(0, 1)] + [+or(0,0,0)] +
[+or(0, 1, 1)] + [+or(1,0, 1)] +
[+or(1, 1, 1)]

Ex() = [X(0),R(1)] + [X(1),R(1)]
Extensible to arithmetic circuits

8/18

Transcendental Syntax
Proofs as tilings

Transcendental Syntax
Motivations

Explain (linear) logic from its computational behaviour.

By finite means!

Answers/Analytic adequate computational space : stellar resolution.

�

independant/local interaction

�

"large enough"

Questions/Synthetic emergence of logical space : correctness, formulas, use.

�

what is a "good" interaction? (subjective)

"This can only be a reconstruction, which means that we roughly know what we are
aiming at." (Transcendental Syntax I).

9/18

Transcendental Syntax
Motivations

Explain (linear) logic from its computational behaviour. By finite means!

Answers/Analytic adequate computational space : stellar resolution.

�

independant/local interaction

�

"large enough"

Questions/Synthetic emergence of logical space : correctness, formulas, use.

�

what is a "good" interaction? (subjective)

"This can only be a reconstruction, which means that we roughly know what we are
aiming at." (Transcendental Syntax I).

9/18

Transcendental Syntax
Motivations

Explain (linear) logic from its computational behaviour. By finite means!

Answers/Analytic adequate computational space : stellar resolution.

�

independant/local interaction

�

"large enough"

Questions/Synthetic emergence of logical space : correctness, formulas, use.

�

what is a "good" interaction? (subjective)

"This can only be a reconstruction, which means that we roughly know what we are
aiming at." (Transcendental Syntax I).

9/18

Transcendental Syntax
Motivations

Explain (linear) logic from its computational behaviour. By finite means!

Answers/Analytic adequate computational space : stellar resolution.
�

independant/local interaction

�

"large enough"

Questions/Synthetic emergence of logical space : correctness, formulas, use.

�

what is a "good" interaction? (subjective)

"This can only be a reconstruction, which means that we roughly know what we are
aiming at." (Transcendental Syntax I).

9/18

Transcendental Syntax
Motivations

Explain (linear) logic from its computational behaviour. By finite means!

Answers/Analytic adequate computational space : stellar resolution.
�

independant/local interaction
�

"large enough"

Questions/Synthetic emergence of logical space : correctness, formulas, use.

�

what is a "good" interaction? (subjective)

"This can only be a reconstruction, which means that we roughly know what we are
aiming at." (Transcendental Syntax I).

9/18

Transcendental Syntax
Motivations

Explain (linear) logic from its computational behaviour. By finite means!

Answers/Analytic adequate computational space : stellar resolution.
�

independant/local interaction
�

"large enough"

Questions/Synthetic emergence of logical space : correctness, formulas, use.

�

what is a "good" interaction? (subjective)

"This can only be a reconstruction, which means that we roughly know what we are
aiming at." (Transcendental Syntax I).

9/18

Transcendental Syntax
Motivations

Explain (linear) logic from its computational behaviour. By finite means!

Answers/Analytic adequate computational space : stellar resolution.
�

independant/local interaction
�

"large enough"

Questions/Synthetic emergence of logical space : correctness, formulas, use.

�

what is a "good" interaction? (subjective)

"This can only be a reconstruction, which means that we roughly know what we are
aiming at." (Transcendental Syntax I).

9/18

Transcendental Syntax
Motivations

Explain (linear) logic from its computational behaviour. By finite means!

Answers/Analytic adequate computational space : stellar resolution.
�

independant/local interaction
�

"large enough"

Questions/Synthetic emergence of logical space : correctness, formulas, use.

�

what is a "good" interaction? (subjective)

"This can only be a reconstruction, which means that we roughly know what we are
aiming at." (Transcendental Syntax I).

9/18

Transcendental Syntax
MLL proof-structures

An alternative representation of proofs as hypergraphs :

Formulas/Vertices. A,B := X | A⊗ B | A` B

Rules/Hyperedges.

ax

Axiom

cut

Cut

⊗

Tensor

`

Par

A⊥1 A1

`
A⊥1 ` A1

A2 A⊥3

⊗

A2 ⊗ A⊥3

ax
ax

−→
A⊥1 A1

`
A⊥1 ` A1

A2 A⊥3

⊗

A2 ⊗ A⊥3

ax
ax

−→ Vehicle + Format + Cuts

10/18

Transcendental Syntax
MLL proof-structures

An alternative representation of proofs as hypergraphs :

Formulas/Vertices. A,B := X | A⊗ B | A` B

Rules/Hyperedges.

ax

Axiom

cut

Cut

⊗

Tensor

`

Par

A⊥1 A1

`
A⊥1 ` A1

A2 A⊥3

⊗

A2 ⊗ A⊥3

ax
ax

−→
A⊥1 A1

`
A⊥1 ` A1

A2 A⊥3

⊗

A2 ⊗ A⊥3

ax
ax

−→ Vehicle + Format + Cuts

10/18

Transcendental Syntax
MLL proof-structures

An alternative representation of proofs as hypergraphs :

Formulas/Vertices. A,B := X | A⊗ B | A` B

Rules/Hyperedges.

ax

Axiom

cut

Cut

⊗

Tensor

`

Par

A⊥1 A1

`
A⊥1 ` A1

A2 A⊥3

⊗

A2 ⊗ A⊥3

ax
ax

−→
A⊥1 A1

`
A⊥1 ` A1

A2 A⊥3

⊗

A2 ⊗ A⊥3

ax
ax

−→ Vehicle + Format + Cuts

10/18

Transcendental Syntax
MLL proof-structures

An alternative representation of proofs as hypergraphs :

Formulas/Vertices. A,B := X | A⊗ B | A` B

Rules/Hyperedges.

ax

Axiom

cut

Cut

⊗

Tensor

`

Par

A⊥1 A1

`
A⊥1 ` A1

A2 A⊥3

⊗

A2 ⊗ A⊥3

ax
ax

−→
A⊥1 A1

`
A⊥1 ` A1

A2 A⊥3

⊗

A2 ⊗ A⊥3

ax
ax

−→ Vehicle + Format + Cuts

10/18

Transcendental Syntax
MLL proof-structures

An alternative representation of proofs as hypergraphs :

Formulas/Vertices. A,B := X | A⊗ B | A` B

Rules/Hyperedges.

ax

Axiom

cut

Cut

⊗

Tensor

`

Par

A⊥1 A1

`
A⊥1 ` A1

A2 A⊥3

⊗

A2 ⊗ A⊥3

ax
ax

−→
A⊥1 A1

`
A⊥1 ` A1

A2 A⊥3

⊗

A2 ⊗ A⊥3

ax
ax

−→ Vehicle + Format + Cuts

10/18

Transcendental Syntax
MLL proof-structures

An alternative representation of proofs as hypergraphs :

Formulas/Vertices. A,B := X | A⊗ B | A` B

Rules/Hyperedges.

ax

Axiom

cut

Cut

⊗

Tensor

`

Par

A⊥1 A1

`
A⊥1 ` A1

A2 A⊥3

⊗

A2 ⊗ A⊥3

ax
ax

−→
A⊥1 A1

`
A⊥1 ` A1

A2 A⊥3

⊗

A2 ⊗ A⊥3

ax
ax

−→ Vehicle + Format + Cuts

10/18

Transcendental Syntax
The computational content of proof-structures

Cut-elimination procedure :

A A⊥

ax

cut

A A

A B

⊗

A⊗ B

A⊥ B⊥

`
A⊥ ` B⊥

cut

A B A⊥ B⊥

cut
cut

Geometry of Interaction :

1 2 3 4 5 6 7 8
−→ 5 6 7 8

Basically a computation of maximal paths in a graph.

11/18

Transcendental Syntax
The computational content of proof-structures

Cut-elimination procedure :

A A⊥

ax

cut

A A

A B

⊗

A⊗ B

A⊥ B⊥

`
A⊥ ` B⊥

cut

A B A⊥ B⊥

cut
cut

Geometry of Interaction :

1 2 3 4 5 6 7 8
−→ 5 6 7 8

Basically a computation of maximal paths in a graph.

11/18

Transcendental Syntax
The computational content of proof-structures

Cut-elimination procedure :

A A⊥

ax

cut

A A

A B

⊗

A⊗ B

A⊥ B⊥

`
A⊥ ` B⊥

cut

A B A⊥ B⊥

cut
cut

Geometry of Interaction :

1 2 3 4 5 6 7 8
−→ 5 6 7 8

Basically a computation of maximal paths in a graph.
11/18

Transcendental Syntax
Simulation of cut-elimination

A⊥1 A1

`
A⊥1 ` A1

A⊥2 A3A2 A⊥3
⊗

A2 ⊗ A⊥3
cut

ax ax ax

1 2 3 4 5 6

12/18

Transcendental Syntax
Simulation of cut-elimination

A⊥1 A1

`
A⊥1 ` A1

A⊥2 A3A2 A⊥3
⊗

A2 ⊗ A⊥3
cut

ax ax ax

1 2 3 4 5 6

+c.pA⊥1 `A1(lx); +c.pA⊥1 `A1(rx) ; +c.pA⊥2 (x); +c.pA2⊗A⊥3 (lx) ; +c.pA2⊗A⊥3 (rx); +c.pA3(x) ;

12/18

Transcendental Syntax
Simulation of cut-elimination

A⊥1 A1

`
A⊥1 ` A1

A⊥2 A3A2 A⊥3
⊗

A2 ⊗ A⊥3
cut

ax ax ax

1 2 3 4 5 6

+c.pA⊥1 `A1(lx); +c.pA⊥1 `A1(rx) ; +c.pA⊥2 (x); +c.pA2⊗A⊥3 (lx) ; +c.pA2⊗A⊥3 (rx); +c.pA3(x) ;

−c.pA⊥1 `A1(x); −c.pA2⊗A⊥3 (x) ;

12/18

Transcendental Syntax
Simulation of cut-elimination

A⊥1 A1

`
A⊥1 ` A1

A⊥2 A3A2 A⊥3
⊗

A2 ⊗ A⊥3
cut

ax ax ax

1 2 3 4 5 6

+c.pA⊥1 `A1(lx); +c.pA⊥1 `A1(rx) ; +c.pA⊥2 (x); +c.pA2⊗A⊥3 (lx) ; +c.pA2⊗A⊥3 (rx); +c.pA3(x) ;

−c.pA⊥1 `A1(lx); −c.pA2⊗A⊥3 (lx) ; −c.pA⊥1 `A1(rx); −c.pA2⊗A⊥3 (rx) ;

12/18

Transcendental Syntax
Simulation of cut-elimination

A⊥1 A1

`
A⊥1 ` A1

A⊥2 A3A2 A⊥3
⊗

A2 ⊗ A⊥3
cut

ax ax ax

1 2 3 4 5 6

+c.pA⊥2 (x); +c.pA3(x) ;

12/18

Transcendental Syntax
The logical content of proof-structures

Only some proof-structures are "logically correct".

Danos-Regnier correctness criterion : testing the vehicle against several Tests ∈ Format.

13/18

Transcendental Syntax
The logical content of proof-structures

Only some proof-structures are "logically correct".
Danos-Regnier correctness criterion : testing the vehicle against several Tests ∈ Format.

13/18

Transcendental Syntax
The logical content of proof-structures

Only some proof-structures are "logically correct".
Danos-Regnier correctness criterion : testing the vehicle against several Tests ∈ Format.

A⊥1 A1

`
A⊥1 ` A1

A2 A⊥3

⊗

A2 ⊗ A⊥3

ax
ax

13/18

Transcendental Syntax
The logical content of proof-structures

Only some proof-structures are "logically correct".
Danos-Regnier correctness criterion : testing the vehicle against several Tests ∈ Format.

A⊥1 A1

`
A⊥1 ` A1

A2 A⊥3

⊗

A2 ⊗ A⊥3

ax
ax

13/18

Transcendental Syntax
The logical content of proof-structures

Only some proof-structures are "logically correct".
Danos-Regnier correctness criterion : testing the vehicle against several Tests ∈ Format.

A⊥1 A1

`
A⊥1 ` A1

A2 A⊥3

⊗

A2 ⊗ A⊥3

ax
ax

13/18

Transcendental Syntax
Simulation of correctness

Stars ≡ Oriented hyperedges

+t.pA⊗B(lx); +t.pA⊥`B⊥(lx) ; +t.pA⊗B(rx); +t.pA⊥`B⊥(rx) ;

Property of the tiling : logically correct iff for all test, the normal form is a single star.

14/18

Transcendental Syntax
Simulation of correctness

Stars ≡ Oriented hyperedges

+t.pA⊗B(lx); +t.pA⊥`B⊥(lx) ; +t.pA⊗B(rx); +t.pA⊥`B⊥(rx) ;

[−t.pA⊗B(lx)+c.qA(x)
] ; [−t.pA⊗B(rx)+c.qA⊥ (x)

] ; [−t.pA⊥`B⊥ (lx)
+c.qB(x)

] ; [−t.pA⊥`B⊥ (rx)
+c.qB⊥ (x)

] ;

[−c.qA(x) −c.qB(x)
+c.qA⊗B(x)

] ; −c.qA⊥ (x) ;
−c.qB⊥ (x)
+c.qA⊥`B⊥ (x)

;

[−c.qA⊗B(x)pA⊗B(x)
] ; [−c.qA⊥`B⊥ (x)

pA⊥`B⊥ (x)
] ;

Property of the tiling : logically correct iff for all test, the normal form is a single star.

14/18

Transcendental Syntax
Simulation of correctness

Stars ≡ Oriented hyperedges

+t.pA⊗B(lx); +t.pA⊥`B⊥(lx) ; +t.pA⊗B(rx); +t.pA⊥`B⊥(rx) ;

[−t.pA⊗B(lx)+c.qA(x)
] ; [−t.pA⊗B(rx)+c.qA⊥ (x)

] ; [−t.pA⊥`B⊥ (lx)
+c.qB(x)

] ; [−t.pA⊥`B⊥ (rx)
+c.qB⊥ (x)

] ;

[−c.qA(x) −c.qB(x)
+c.qA⊗B(x)

] ; −c.qA⊥ (x) ;
−c.qB⊥ (x)
+c.qA⊥`B⊥ (x)

;

[−c.qA⊗B(x)pA⊗B(x)
] ; [−c.qA⊥`B⊥ (x)

pA⊥`B⊥ (x)
] ;

Property of the tiling : logically correct iff for all test, the normal form is a single star.

14/18

Transcendental Syntax
Simulation of correctness

Stars ≡ Oriented hyperedges

+t.pA⊗B(lx); +t.pA⊥`B⊥(lx) ; +t.pA⊗B(rx); +t.pA⊥`B⊥(rx) ;

[−t.pA⊗B(lx)+c.qA(x)
] ; [−t.pA⊗B(rx)+c.qA⊥ (x)

] ; [−t.pA⊥`B⊥ (lx)
+c.qB(x)

] ; [−t.pA⊥`B⊥ (rx)
+c.qB⊥ (x)

] ;

[−c.qA(x) −c.qB(x)
+c.qA⊗B(x)

] ; −c.qA⊥ (x) ;
−c.qB⊥ (x)
+c.qA⊥`B⊥ (x)

;

[−c.qA⊗B(x)pA⊗B(x)
] ; [−c.qA⊥`B⊥ (x)

pA⊥`B⊥ (x)
] ;

Property of the tiling : logically correct iff for all test, the normal form is a single star. 14/18

Transcendental Syntax
Typing and formulas

Use of techniques from "linear" realisability.

Pre-types description of a behaviour A = {i}i∈I.

Orthogonality Choose a definition of "good interaction" ⊥′.

Dual pre-type A⊥ set of "good partners" { | ∀A ∈ A,⊥A}.

Types A = A⊥⊥ closed interaction.

Tensor A⊗ B := {A] B | A ∈ A,B ∈ B}⊥⊥.

Other constructions A` B := (A⊥ ⊗ B⊥)⊥, A(B := A⊥ ` B.

1⊥2⇔|Ex(1] 2)| = 1 : captures MLL formulas.

15/18

Transcendental Syntax
Typing and formulas

Use of techniques from "linear" realisability.

Pre-types description of a behaviour A = {i}i∈I.

Orthogonality Choose a definition of "good interaction" ⊥′.

Dual pre-type A⊥ set of "good partners" { | ∀A ∈ A,⊥A}.

Types A = A⊥⊥ closed interaction.

Tensor A⊗ B := {A] B | A ∈ A,B ∈ B}⊥⊥.

Other constructions A` B := (A⊥ ⊗ B⊥)⊥, A(B := A⊥ ` B.

1⊥2⇔|Ex(1] 2)| = 1 : captures MLL formulas.

15/18

Transcendental Syntax
Typing and formulas

Use of techniques from "linear" realisability.

Pre-types description of a behaviour A = {i}i∈I.

Orthogonality Choose a definition of "good interaction" ⊥′.

Dual pre-type A⊥ set of "good partners" { | ∀A ∈ A,⊥A}.

Types A = A⊥⊥ closed interaction.

Tensor A⊗ B := {A] B | A ∈ A,B ∈ B}⊥⊥.

Other constructions A` B := (A⊥ ⊗ B⊥)⊥, A(B := A⊥ ` B.

1⊥2⇔|Ex(1] 2)| = 1 : captures MLL formulas.

15/18

Transcendental Syntax
Typing and formulas

Use of techniques from "linear" realisability.

Pre-types description of a behaviour A = {i}i∈I.

Orthogonality Choose a definition of "good interaction" ⊥′.

Dual pre-type A⊥ set of "good partners" { | ∀A ∈ A,⊥A}.

Types A = A⊥⊥ closed interaction.

Tensor A⊗ B := {A] B | A ∈ A,B ∈ B}⊥⊥.

Other constructions A` B := (A⊥ ⊗ B⊥)⊥, A(B := A⊥ ` B.

1⊥2⇔|Ex(1] 2)| = 1 : captures MLL formulas.

15/18

Transcendental Syntax
Typing and formulas

Use of techniques from "linear" realisability.

Pre-types description of a behaviour A = {i}i∈I.

Orthogonality Choose a definition of "good interaction" ⊥′.

Dual pre-type A⊥ set of "good partners" { | ∀A ∈ A,⊥A}.

Types A = A⊥⊥ closed interaction.

Tensor A⊗ B := {A] B | A ∈ A,B ∈ B}⊥⊥.

Other constructions A` B := (A⊥ ⊗ B⊥)⊥, A(B := A⊥ ` B.

1⊥2⇔|Ex(1] 2)| = 1 : captures MLL formulas.

15/18

Transcendental Syntax
Typing and formulas

Use of techniques from "linear" realisability.

Pre-types description of a behaviour A = {i}i∈I.

Orthogonality Choose a definition of "good interaction" ⊥′.

Dual pre-type A⊥ set of "good partners" { | ∀A ∈ A,⊥A}.

Types A = A⊥⊥ closed interaction.

Tensor A⊗ B := {A] B | A ∈ A,B ∈ B}⊥⊥.

Other constructions A` B := (A⊥ ⊗ B⊥)⊥, A(B := A⊥ ` B.

1⊥2⇔|Ex(1] 2)| = 1 : captures MLL formulas.

15/18

Transcendental Syntax
Typing and formulas

Use of techniques from "linear" realisability.

Pre-types description of a behaviour A = {i}i∈I.

Orthogonality Choose a definition of "good interaction" ⊥′.

Dual pre-type A⊥ set of "good partners" { | ∀A ∈ A,⊥A}.

Types A = A⊥⊥ closed interaction.

Tensor A⊗ B := {A] B | A ∈ A,B ∈ B}⊥⊥.

Other constructions A` B := (A⊥ ⊗ B⊥)⊥, A(B := A⊥ ` B.

1⊥2⇔|Ex(1] 2)| = 1 : captures MLL formulas.

15/18

Transcendental Syntax
Typing and formulas

Use of techniques from "linear" realisability.

Pre-types description of a behaviour A = {i}i∈I.

Orthogonality Choose a definition of "good interaction" ⊥′.

Dual pre-type A⊥ set of "good partners" { | ∀A ∈ A,⊥A}.

Types A = A⊥⊥ closed interaction.

Tensor A⊗ B := {A] B | A ∈ A,B ∈ B}⊥⊥.

Other constructions A` B := (A⊥ ⊗ B⊥)⊥, A(B := A⊥ ` B.

1⊥2⇔|Ex(1] 2)| = 1 : captures MLL formulas.
15/18

Transcendental Syntax
Conclusion

• Logic programs and geometric tiling meet

• Can be extended to full linear logic and second order

�

exponentials : work in progress

• Reconstruction of first-order logic possible

�

terms/individuals as multiplicative propositions

�

equality as linear equivalence (not predicate!)

• Logic programs and functional programs, unified?

16/18

Transcendental Syntax
Conclusion

• Logic programs and geometric tiling meet

• Can be extended to full linear logic and second order

�

exponentials : work in progress

• Reconstruction of first-order logic possible

�

terms/individuals as multiplicative propositions

�

equality as linear equivalence (not predicate!)

• Logic programs and functional programs, unified?

16/18

Transcendental Syntax
Conclusion

• Logic programs and geometric tiling meet

• Can be extended to full linear logic and second order
�

exponentials : work in progress

• Reconstruction of first-order logic possible

�

terms/individuals as multiplicative propositions

�

equality as linear equivalence (not predicate!)

• Logic programs and functional programs, unified?

16/18

Transcendental Syntax
Conclusion

• Logic programs and geometric tiling meet

• Can be extended to full linear logic and second order
�

exponentials : work in progress

• Reconstruction of first-order logic possible

�

terms/individuals as multiplicative propositions

�

equality as linear equivalence (not predicate!)

• Logic programs and functional programs, unified?

16/18

Transcendental Syntax
Conclusion

• Logic programs and geometric tiling meet

• Can be extended to full linear logic and second order
�

exponentials : work in progress

• Reconstruction of first-order logic possible

�

terms/individuals as multiplicative propositions

�

equality as linear equivalence (not predicate!)

• Logic programs and functional programs, unified?

16/18

Transcendental Syntax
Conclusion

• Logic programs and geometric tiling meet

• Can be extended to full linear logic and second order
�

exponentials : work in progress

• Reconstruction of first-order logic possible

�

terms/individuals as multiplicative propositions

�

equality as linear equivalence (not predicate!)

• Logic programs and functional programs, unified?

16/18

Transcendental Syntax
Conclusion

• Logic programs and geometric tiling meet

• Can be extended to full linear logic and second order
�

exponentials : work in progress

• Reconstruction of first-order logic possible

�

terms/individuals as multiplicative propositions

�

equality as linear equivalence (not predicate!)

• Logic programs and functional programs, unified?

16/18

Future and related works
(actually a call for help)

Hypergraphings
Hypergraphs with dynamics

Computation with hypergraphs :

Model Vertices Hyperedges
Boolean circuits addresses gates
Proof-nets addresses rules
Constellations terms stars
Automata states transitions

�

interaction of hypergraphs + execution.

�

generalisation of Seiller’s Graphings.

�

categorical framework? Operads, string diagrams, hypergraph categories, frobenius
algebras, ...

17/18

Hypergraphings
Hypergraphs with dynamics

Computation with hypergraphs :

Model Vertices Hyperedges
Boolean circuits addresses gates
Proof-nets addresses rules
Constellations terms stars
Automata states transitions

�

interaction of hypergraphs + execution.

�

generalisation of Seiller’s Graphings.

�

categorical framework? Operads, string diagrams, hypergraph categories, frobenius
algebras, ...

17/18

Hypergraphings
Hypergraphs with dynamics

Computation with hypergraphs :

Model Vertices Hyperedges
Boolean circuits addresses gates
Proof-nets addresses rules
Constellations terms stars
Automata states transitions

�

interaction of hypergraphs + execution.

�

generalisation of Seiller’s Graphings.

�

categorical framework? Operads, string diagrams, hypergraph categories, frobenius
algebras, ...

17/18

Hypergraphings
Hypergraphs with dynamics

Computation with hypergraphs :

Model Vertices Hyperedges
Boolean circuits addresses gates
Proof-nets addresses rules
Constellations terms stars
Automata states transitions

�

interaction of hypergraphs + execution.

�

generalisation of Seiller’s Graphings.

�

categorical framework? Operads, string diagrams, hypergraph categories, frobenius
algebras, ... 17/18

Stellar Resolution and Automata Theory

Dependency graphD() : relations of matchability within a constellation .

−add(0, y, y); +add(x, y, z); −add(s(x), y, s(z)); +add(sn(0), sm(0), r); r;

Diagram (formally) : graph homomorphism δ : G→ D().
−add(0, y, y); +add(x, y, z); −add(s(x), y, s(z));

+add(x, y, z); −add(s(x), y, s(z)); +add(s2(0), s2(0), r); r;

Run in finite automata : path 7→ state graph

�

we are interested in reaching finale state.

�

automaton for stellar execution?

18/18

Stellar Resolution and Automata Theory

Dependency graphD() : relations of matchability within a constellation .

−add(0, y, y); +add(x, y, z); −add(s(x), y, s(z)); +add(sn(0), sm(0), r); r;

Diagram (formally) : graph homomorphism δ : G→ D().
−add(0, y, y); +add(x, y, z); −add(s(x), y, s(z));

+add(x, y, z); −add(s(x), y, s(z)); +add(s2(0), s2(0), r); r;

Run in finite automata : path 7→ state graph

�

we are interested in reaching finale state.

�

automaton for stellar execution?

18/18

Stellar Resolution and Automata Theory

Dependency graphD() : relations of matchability within a constellation .

−add(0, y, y); +add(x, y, z); −add(s(x), y, s(z)); +add(sn(0), sm(0), r); r;

Diagram (formally) : graph homomorphism δ : G→ D().
−add(0, y, y); +add(x, y, z); −add(s(x), y, s(z));

+add(x, y, z); −add(s(x), y, s(z)); +add(s2(0), s2(0), r); r;

Run in finite automata : path 7→ state graph

�

we are interested in reaching finale state.

�

automaton for stellar execution?

18/18

Stellar Resolution and Automata Theory

Dependency graphD() : relations of matchability within a constellation .

−add(0, y, y); +add(x, y, z); −add(s(x), y, s(z)); +add(sn(0), sm(0), r); r;

Diagram (formally) : graph homomorphism δ : G→ D().
−add(0, y, y); +add(x, y, z); −add(s(x), y, s(z));

+add(x, y, z); −add(s(x), y, s(z)); +add(s2(0), s2(0), r); r;

Run in finite automata : path 7→ state graph

�

we are interested in reaching finale state.

�

automaton for stellar execution? 18/18

	Stellar Resolution
	Transcendental Syntax
	Future and related works

