From computation to a reconstruction of (linear) logic

Team LoVe - LIPN Université Sorbone Paris Nord
Boris ENG (advisor: Thomas Seiller)

Context

Foundations of logic

Traditional proof theory logic \rightarrow mathematical tools

Context

Foundations of logic

Traditional proof theory logic \rightarrow mathematical tools
Transcendental Syntax (Jean-Yves Girard) mathematical tools \rightarrow logic (emergence)

Context

Foundations of logic

Traditional proof theory logic \rightarrow mathematical tools
Transcendental Syntax (Jean-Yves Girard) mathematical tools \rightarrow logic (emergence)
\rightarrow from an interactive model of computation (think of a society)

Context

Foundations of logic

Traditional proof theory logic \rightarrow mathematical tools
Transcendental Syntax (Jean-Yves Girard) mathematical tools \rightarrow logic (emergence)
\rightarrow from an interactive model of computation (think of a society)
\downarrow behaviours : interaction \rightsquigarrow classification

Context

Foundations of logic

Traditional proof theory logic \rightarrow mathematical tools
Transcendental Syntax (Jean-Yves Girard) mathematical tools \rightarrow logic (emergence)
\rightarrow from an interactive model of computation (think of a society)
\longrightarrow behaviours : interaction \rightsquigarrow classification
\hookrightarrow types: pre-made tests \rightsquigarrow classification

Context

Foundations of logic

Traditional proof theory logic \rightarrow mathematical tools
Transcendental Syntax (Jean-Yves Girard) mathematical tools \rightarrow logic (emergence)
\rightarrow from an interactive model of computation (think of a society)
\longrightarrow behaviours : interaction \rightsquigarrow classification
$厶$ types : pre-made tests \rightsquigarrow classification
My thesis : turn it into a technical work.

Context

Foundations of logic

Traditional proof theory logic \rightarrow mathematical tools
Transcendental Syntax (Jean-Yves Girard) mathematical tools \rightarrow logic (emergence)
\rightarrow from an interactive model of computation (think of a society)
\longrightarrow behaviours : interaction \rightsquigarrow classification
\hookrightarrow types: pre-made tests \rightsquigarrow classification
My thesis : turn it into a technical work.
\rightarrow Assumption : a reconstruction of logic starts from linear logic.

Context

Foundations of logic

Traditional proof theory logic \rightarrow mathematical tools
Transcendental Syntax (Jean-Yves Girard) mathematical tools \rightarrow logic (emergence)
\rightarrow from an interactive model of computation (think of a society)
\longrightarrow behaviours : interaction \rightsquigarrow classification
\hookrightarrow types: pre-made tests \rightsquigarrow classification
My thesis : turn it into a technical work.
\rightarrow Assumption : a reconstruction of logic starts from linear logic.
\hookrightarrow Goal : make the logical mechanisms explicit.

Stellar Resolution

The space of computation

Independent stars with (un)polarised first-order term as rays. Constellations (kind of programs) as multisets of stars.

Stellar Resolution

The space of computation

Independent stars with (un)polarised first-order term as rays. Constellations (kind of programs) as multisets of stars.

t and u are matchable with unifier $\theta=\{x \mapsto f(y)\}$.

Stellar Resolution

The space of computation

Independent stars with (un)polarised first-order term as rays.
Constellations (kind of programs) as multisets of stars.

t and u are matchable with unifier $\theta=\{x \mapsto f(y)\}$.

Stellar Resolution

The space of computation

Independent stars with (un)polarised first-order term as rays.
Constellations (kind of programs) as multisets of stars.

t and u are matchable with unifier $\theta=\{x \mapsto f(y)\}$.

Stellar Resolution

The space of computation

Independent stars with (un)polarised first-order term as rays.
Constellations (kind of programs) as multisets of stars.

t and u are matchable with unifier $\theta=\{x \mapsto f(y)\}$.
Accidentally : (query-free) logic programming and tiling meet (e.g DNA computing).

What is a proof?
From proof trees to proof structures

Proof tree π :

What is a proof?

From proof trees to proof structures

Proof tree π :

Linear Logic proof structure \mathscr{S} (more general) :

What is a proof?

From proof trees to proof structures

Proof tree π :

$\overline{\vdash B, B^{\perp}}$ ax $\overline{\vdash A, A^{\perp}}{ }^{a x}$
$\vdash A^{\perp}, B^{\perp}, B \otimes A$
$\vdash A^{\perp}>B^{\perp}, B \otimes A$
$\vdash\left(A^{\perp} \gamma B^{\perp}\right) \mathcal{P}(B \otimes A)$

Linear Logic proof structure \mathscr{S} (more general) :

Logical correctness : does \mathscr{S} pass tests T_{1}, \ldots, T_{n} ? If so, proof of C.

What is a proof?

From proof trees to proof structures

Proof tree π :

$\overline{\vdash B, B^{\perp}}$ ax $\overline{\vdash A, A^{\perp}}{ }^{a x}$
$\stackrel{\vdash A^{\perp}, B^{\perp}, B \otimes A}{\vdash}$
$\vdash A^{\perp} \gamma B^{\perp}, B \otimes A$
$\vdash\left(A^{\perp} \mathcal{P} B^{\perp}\right) \mathcal{P}(B \otimes A)$

Linear Logic proof structure \mathscr{S} (more general) :

Logical correctness : does \mathscr{S} pass tests T_{1}, \ldots, T_{n} ? If so, proof of C.
Translation into constellations : correct structure $=$ core constellation + set of tests

What is a proof?

From proof trees to proof structures

Proof tree π :

$\overline{\vdash B, B^{\perp}}$ ax $\overline{\vdash A, A^{\perp}}{ }^{a x}$
$\stackrel{\vdash A^{\perp}, B^{\perp}, B \otimes A}{\vdash}$
$\vdash A^{\perp} 8 B^{\perp}, B \otimes A$
$\vdash\left(A^{\perp} \ngtr B^{\perp}\right) \mathcal{X}(B \otimes A)$

Linear Logic proof structure \mathscr{S} (more general) :

Logical correctness : does \mathscr{S} pass tests T_{1}, \ldots, T_{n} ? If so, proof of C.
Translation into constellations : correct structure $=$ core constellation + set of tests
\downarrow typing by stereotypes: passing T_{1}, \ldots, T_{n} implies Φ : C.

Behaviours

using realisability techniques

Behaviours

using realisability techniques

Typing by behaviour : classify from how Φ interacts.

Behaviours

using realisability techniques

Typing by behaviour : classify from how Φ interacts.
Pre-behaviour set of constellations (programs) A.

Behaviours

using realisability techniques

Typing by behaviour : classify from how Φ interacts.
Pre-behaviour set of constellations (programs) A.
Orthogonality Define "good interaction".

Behaviours

using realisability techniques

Typing by behaviour : classify from how Φ interacts.
Pre-behaviour set of constellations (programs) A.
Orthogonality Define "good interaction".
4 for instance $\Phi \perp \Phi^{\prime} \Leftrightarrow \operatorname{Ex}\left(\Phi \uplus \Phi^{\prime}\right)$ terminates.

Behaviours

using realisability techniques

Typing by behaviour : classify from how Φ interacts.
Pre-behaviour set of constellations (programs) A.
Orthogonality Define "good interaction".
4 for instance $\Phi \perp \Phi^{\prime} \Leftrightarrow \operatorname{Ex}\left(\Phi \uplus \Phi^{\prime}\right)$ terminates.
$\rightarrow A^{\perp}$ set of good partners.

Behaviours

using realisability techniques

Typing by behaviour : classify from how Φ interacts.
Pre-behaviour set of constellations (programs) A.
Orthogonality Define "good interaction".
4 for instance $\Phi \perp \Phi^{\prime} \Leftrightarrow \operatorname{Ex}\left(\Phi \uplus \Phi^{\prime}\right)$ terminates.
$\rightarrow A^{\perp}$ set of good partners.
Behaviour when $A=A^{\perp \perp}$.

Behaviours

using realisability techniques

Typing by behaviour : classify from how Φ interacts.
Pre-behaviour set of constellations (programs) A.
Orthogonality Define "good interaction".
4 for instance $\Phi \perp \Phi^{\prime} \Leftrightarrow \operatorname{Ex}\left(\Phi \uplus \Phi^{\prime}\right)$ terminates.
$\rightarrow A^{\perp}$ set of good partners.
Behaviour when $A=A^{\perp \perp}$.
Tensor $A \otimes B:=\left\{\Phi_{A} \uplus \Phi_{B} \mid \Phi_{A} \in A, \Phi_{B} \in B\right\}^{\perp \perp}$.

Behaviours

using realisability techniques

Typing by behaviour : classify from how Φ interacts.
Pre-behaviour set of constellations (programs) A.
Orthogonality Define "good interaction".
4 for instance $\Phi \perp \Phi^{\prime} \Leftrightarrow \operatorname{Ex}\left(\Phi \uplus \Phi^{\prime}\right)$ terminates.
$\rightarrow A^{\perp}$ set of good partners.
Behaviour when $A=A^{\perp \perp}$.
Tensor $\mathrm{A} \otimes \mathrm{B}:=\left\{\Phi_{A} \uplus \Phi_{B} \mid \Phi_{A} \in \mathrm{~A}, \Phi_{B} \in \mathrm{~B}\right\}^{\perp \perp}$.
Other "connectives" $\mathbf{A} 8 \mathbf{B}:=\mathbf{A}^{\perp} \otimes \mathrm{B}^{\perp}$ and $\mathbf{A} \multimap \mathbf{B}:=\mathrm{A}^{\perp} 8 \mathrm{~B}$.

Behaviours

using realisability techniques

Typing by behaviour : classify from how Φ interacts.
Pre-behaviour set of constellations (programs) A.
Orthogonality Define "good interaction".
4 for instance $\Phi \perp \Phi^{\prime} \Leftrightarrow \operatorname{Ex}\left(\Phi \uplus \Phi^{\prime}\right)$ terminates.
$\square A^{\perp}$ set of good partners.
Behaviour when $A=A^{\perp \perp}$.
Tensor $\mathrm{A} \otimes \mathrm{B}:=\left\{\Phi_{A} \uplus \Phi_{B} \mid \Phi_{A} \in \mathrm{~A}, \Phi_{B} \in \mathrm{~B}\right\}^{\perp \perp}$.
Other "connectives" $A \gamma B:=A^{\perp} \otimes B^{\perp}$ and $A \multimap B:=A^{\perp} \gamma B$.
Adequation $\Phi \in \mathbf{A}$ behaves as expected from the tests for \mathbf{A}.

Conclusion and future works

A lot of ways to extend the idea.

Conclusion and future works

A lot of ways to extend the idea.

- extension to full linear logic, second and first order.

Conclusion and future works

A lot of ways to extend the idea.

- extension to full linear logic, second and first order.
\hookrightarrow better design for logic?

Conclusion and future works

A lot of ways to extend the idea.

- extension to full linear logic, second and first order.
\hookrightarrow better design for logic?
- hopes in complexity theory (descriptive ?).

Conclusion and future works

A lot of ways to extend the idea.

- extension to full linear logic, second and first order.
\hookrightarrow better design for logic?
- hopes in complexity theory (descriptive ?).
\hookrightarrow better understanding of logic, better understanding of complexity?

Conclusion and future works

A lot of ways to extend the idea.

- extension to full linear logic, second and first order.
\hookrightarrow better design for logic?
- hopes in complexity theory (descriptive ?).
\square better understanding of logic, better understanding of complexity?

Thank you for listening !

