From computation to a reconstruction of (linear) logic

Team LoVe – LIPN Université Sorbone Paris Nord

Boris ENG (advisor: Thomas Seiller)

Traditional proof theory logic → mathematical tools

Traditional proof theory logic \rightarrow mathematical tools **Transcendental Syntax (Jean-Yves Girard)** mathematical tools \rightarrow logic (emergence)

Traditional proof theory logic → mathematical tools

Transcendental Syntax (Jean-Yves Girard) mathematical tools \rightarrow logic (emergence)

↓ from an interactive model of computation (think of a society)

Traditional proof theory logic → mathematical tools

Transcendental Syntax (Jean-Yves Girard) mathematical tools → logic (emergence)

- ↓ from an interactive model of computation (think of a society)

Traditional proof theory logic → mathematical tools

Transcendental Syntax (Jean-Yves Girard) mathematical tools → logic (emergence)

- ↓ from an interactive model of computation (think of a society)
- \downarrow types : pre-made tests \rightsquigarrow classification

Traditional proof theory logic → mathematical tools

Transcendental Syntax (Jean-Yves Girard) mathematical tools → logic (emergence)

- ↓ from an interactive model of computation (think of a society)
- \downarrow behaviours : interaction \rightsquigarrow classification
- \downarrow types : pre-made tests \rightsquigarrow classification

My thesis : turn it into a technical work.

Traditional proof theory logic → mathematical tools

Transcendental Syntax (Jean-Yves Girard) mathematical tools → logic (emergence)

- └→ from an interactive model of computation (think of a society)
- \downarrow types : pre-made tests \rightsquigarrow classification

My thesis : turn it into a technical work.

Assumption : a reconstruction of logic starts from linear logic.

Traditional proof theory logic → mathematical tools

Transcendental Syntax (Jean-Yves Girard) mathematical tools → logic (emergence)

- └→ from an interactive model of computation (think of a society)
- \downarrow types : pre-made tests \rightsquigarrow classification

My thesis : turn it into a technical work.

- → Assumption : a reconstruction of logic starts from linear logic.
- └→ Goal : make the logical mechanisms explicit.

The space of computation

Independent stars with (un)polarised first-order term as rays. Constellations (kind of programs) as multisets of stars.

$$g(x) \bullet \oint_{-b(x)}^{+a(x)} \bullet$$

$$-a(f(y)) + c(y)$$

• ϕ_2 •

The space of computation

Independent stars with (un)polarised first-order term as rays. Constellations (kind of programs) as multisets of stars.

$$g(x) \bullet (\phi_1) + a(x) - a(f(y)) + c(y) + c(y) - b(x) \bullet (\phi_2) + b(x) + c(y) + c($$

t and *u* are matchable with unifier $\theta = \{x \mapsto f(y)\}$.

The space of computation

Independent stars with (un)polarised first-order term as rays. Constellations (kind of programs) as multisets of stars.

$$g(f(y)) \bullet (\phi_1) \bullet (\phi_2) \bullet +c(y) \\ -b(f(y)) \bullet (\phi_1) \bullet (\phi_2) \bullet +c(y) \\ -b(f(y)) \bullet (\phi_1) \bullet (\phi_2) \bullet (\phi_2) \bullet +c(y) \\ -b(f(y)) \bullet (\phi_1) \bullet (\phi_2) \bullet ($$

t and *u* are matchable with unifier $\theta = \{x \mapsto f(y)\}$.

The space of computation

Independent stars with (un)polarised first-order term as rays. Constellations (kind of programs) as multisets of stars.

t and u are matchable with unifier $\theta = \{x \mapsto f(y)\}.$

The space of computation

Independent stars with (un)polarised first-order term as rays. Constellations (kind of programs) as multisets of stars.

t and *u* are matchable with unifier $\theta = \{x \mapsto f(y)\}$.

Accidentally : (query-free) logic programming and tiling meet (e.g DNA computing).

From proof trees to proof structures

Proof tree π :

$$\frac{\overline{\vdash B, B^{\perp}} \text{ ax } \overline{\vdash A, A^{\perp}} \text{ ax }}{\overline{\vdash A^{\perp}, B^{\perp}, B \otimes A} \text{ ax }} \otimes \frac{\overline{\vdash A^{\perp}, B^{\perp}, B \otimes A}}{\overline{\vdash A^{\perp} \Im B^{\perp}, B \otimes A} \Im} \otimes \overline{\vdash (A^{\perp} \Im B^{\perp}) \Im (B \otimes A)} = \overline{\neg}$$

From proof trees to proof structures

Proof tree π :

 $\frac{\overline{\vdash B, B^{\perp}} \text{ ax } \overline{\vdash A, A^{\perp}} \text{ ax }}{\overline{\vdash A^{\perp}, B^{\perp}, B \otimes A} \text{ ax }} \otimes \frac{\overline{\vdash A^{\perp}, B^{\perp}, B \otimes A}}{\overline{\vdash A^{\perp} \Im B^{\perp}, B \otimes A} } \Im$

Linear Logic proof structure \mathcal{S} (more general) :

From proof trees to proof structures

Proof tree π :

Linear Logic proof structure \mathcal{S} (more general) :

Logical correctness : does \mathcal{S} pass tests $T_1, ..., T_n$? If so, proof of C.

From proof trees to proof structures

Proof tree π :

Linear Logic proof structure \mathcal{S} (more general) :

Logical correctness : does \mathcal{S} pass tests $T_1, ..., T_n$? If so, proof of C.

Translation into constellations : correct structure = core constellation + set of tests

From proof trees to proof structures

Proof tree π :

Linear Logic proof structure \mathcal{S} (more general) :

Logical correctness : does \mathscr{S} pass tests $T_1, ..., T_n$? If so, proof of C.

Translation into constellations : correct structure = core constellation + set of tests

↓ typing by stereotypes : passing $T_1, ..., T_n$ implies Φ : C.

using realisability techniques

using realisability techniques

Typing by behaviour : classify from how Φ interacts.

using realisability techniques

Typing by behaviour : classify from how Φ interacts.

Pre-behaviour set of constellations (programs) A.

using realisability techniques

Typing by behaviour : classify from how Φ interacts. **Pre-behaviour** set of constellations (programs) **A**. **Orthogonality** Define "good interaction".

using realisability techniques

Typing by behaviour : classify from how Φ interacts.

Pre-behaviour set of constellations (programs) A.

Orthogonality Define "good interaction".

iagle for instance Φ⊥Φ' ⇔ Ex(Φ ⊎ Φ') terminates.

using realisability techniques

Typing by behaviour : classify from how Φ interacts.

Pre-behaviour set of constellations (programs) A.

Orthogonality Define "good interaction".

- iagle for instance Φ⊥Φ' ⇔ Ex(Φ ⊎ Φ') terminates.
- \downarrow **A**^{\perp} set of good partners.

using realisability techniques

Typing by behaviour : classify from how Φ interacts.

Pre-behaviour set of constellations (programs) A.

Orthogonality Define "good interaction".

□ for instance Φ⊥Φ' ⇔ Ex(Φ ⊎ Φ') terminates.

 \downarrow **A**^{\perp} set of good partners.

Behaviour when $A = A^{\perp \perp}$.

using realisability techniques

Typing by behaviour : classify from how Φ interacts.

Pre-behaviour set of constellations (programs) A.

Orthogonality Define "good interaction".

iagle for instance Φ⊥Φ' ⇔ Ex(Φ ⊎ Φ') terminates.

 \downarrow **A**^{\perp} set of good partners.

Behaviour when $A = A^{\perp \perp}$.

Tensor $A \otimes B := \{ \Phi_A \uplus \Phi_B \mid \Phi_A \in A, \Phi_B \in B \}^{\perp \perp}$.

using realisability techniques

Typing by behaviour : classify from how Φ interacts.

Pre-behaviour set of constellations (programs) A.

Orthogonality Define "good interaction".

iagle for instance Φ⊥Φ' ⇔ Ex(Φ ⊎ Φ') terminates.

 \downarrow **A**^{\perp} set of good partners.

Behaviour when $A = A^{\perp \perp}$.

Tensor $\mathbf{A} \otimes \mathbf{B} := \{ \Phi_A \uplus \Phi_B \mid \Phi_A \in \mathbf{A}, \Phi_B \in \mathbf{B} \}^{\perp \perp}.$ Other "connectives" $\mathbf{A} \stackrel{\mathcal{D}}{\rightarrow} \mathbf{B} := \mathbf{A}^{\perp} \otimes \mathbf{B}^{\perp}$ and $\mathbf{A} \multimap \mathbf{B} := \mathbf{A}^{\perp} \stackrel{\mathcal{D}}{\rightarrow} \mathbf{B}.$

using realisability techniques

Typing by behaviour : classify from how Φ interacts.

Pre-behaviour set of constellations (programs) A.

Orthogonality Define "good interaction".

iagle for instance Φ⊥Φ' ⇔ Ex(Φ ⊎ Φ') terminates.

 \downarrow **A**^{\perp} set of good partners.

Behaviour when $A = A^{\perp \perp}$.

Tensor $A \otimes B := \{ \Phi_A \uplus \Phi_B \mid \Phi_A \in A, \Phi_B \in B \}^{\perp \perp}$.

Other "connectives" $A \Im B := A^{\perp} \otimes B^{\perp}$ and $A \multimap B := A^{\perp} \Im B$.

Adequation $\Phi \in A$ behaves as expected from the tests for A.

A lot of ways to extend the idea.

• extension to full linear logic, second and first order.

- extension to full linear logic, second and first order.
 - better design for logic?

- extension to full linear logic, second and first order.
 - better design for logic?
- hopes in complexity theory (descriptive?).

- extension to full linear logic, second and first order.
 - better design for logic?
- hopes in complexity theory (descriptive?).
 - \downarrow better understanding of logic, better understanding of complexity?

A lot of ways to extend the idea.

- extension to full linear logic, second and first order.
 - better design for logic?
- hopes in complexity theory (descriptive?).
 - \downarrow better understanding of logic, better understanding of complexity?

Thank you for listening!