
Transcendental Syntax
A toolbox for the interface logic-computation

LIPN – Université Sorbonne Paris Nord

Boris Eng

Realisability theory

Realisability/logical relations. [Riba, LICS 2007].

• programs : pure λ-calculus t, u ::= x | λx.t | tu.
• types : simple types as set of terms t : A⇐⇒ t ∈ A.

– base type o := 𝒮𝒩 (set of terminating programs).
– A⇒ B = {t | ∀u ∈ A, tu ∈ B)}

1/8

Realisability theory

Realisability/logical relations. [Riba, LICS 2007].

• programs : pure λ-calculus t, u ::= x | λx.t | tu.

• types : simple types as set of terms t : A⇐⇒ t ∈ A.
– base type o := 𝒮𝒩 (set of terminating programs).
– A⇒ B = {t | ∀u ∈ A, tu ∈ B)}

1/8

Realisability theory

Realisability/logical relations. [Riba, LICS 2007].

• programs : pure λ-calculus t, u ::= x | λx.t | tu.
• types : simple types as set of terms t : A⇐⇒ t ∈ A.

– base type o := 𝒮𝒩 (set of terminating programs).
– A⇒ B = {t | ∀u ∈ A, tu ∈ B)}

1/8

Realisability theory

Realisability/logical relations. [Riba, LICS 2007].

• programs : pure λ-calculus t, u ::= x | λx.t | tu.
• types : simple types as set of terms t : A⇐⇒ t ∈ A.

– base type o := 𝒮𝒩 (set of terminating programs).

– A⇒ B = {t | ∀u ∈ A, tu ∈ B)}

1/8

Realisability theory

Realisability/logical relations. [Riba, LICS 2007].

• programs : pure λ-calculus t, u ::= x | λx.t | tu.
• types : simple types as set of terms t : A⇐⇒ t ∈ A.

– base type o := 𝒮𝒩 (set of terminating programs).
– A⇒ B = {t | ∀u ∈ A, tu ∈ B)}

1/8

From Geometry of Interaction to Transcendental Syntax

Geometry of Interaction and Ludics (Girard). Reconstruction of logic from computation.

• programs : some mathematical representation of proofs(-nets).
• types : formulas of linear logic.

– A⇒ B := {π | ∀π′ ∈ A, cut(π, π′) ∈ B)} (linear implication).
– π ⊥ π′ ⇐⇒ cut(π, π′) satisfies some P.
– A⊥ := {π | ∀π′ ∈ A, π ⊥ π′} (linear negation).
– Linear logic formulas satisfy A = A⊥⊥.

Transcendental Syntax (Girard, 2013). Improvements on GoI.

• programs : "Stellar Resolution" (Turing-complete).

• types : formulas of linear logic and more.

• Speaks about the "logic" of a computational model.

2/8

From Geometry of Interaction to Transcendental Syntax

Geometry of Interaction and Ludics (Girard). Reconstruction of logic from computation.

• programs : some mathematical representation of proofs(-nets).

• types : formulas of linear logic.
– A⇒ B := {π | ∀π′ ∈ A, cut(π, π′) ∈ B)} (linear implication).
– π ⊥ π′ ⇐⇒ cut(π, π′) satisfies some P.
– A⊥ := {π | ∀π′ ∈ A, π ⊥ π′} (linear negation).
– Linear logic formulas satisfy A = A⊥⊥.

Transcendental Syntax (Girard, 2013). Improvements on GoI.

• programs : "Stellar Resolution" (Turing-complete).

• types : formulas of linear logic and more.

• Speaks about the "logic" of a computational model.

2/8

From Geometry of Interaction to Transcendental Syntax

Geometry of Interaction and Ludics (Girard). Reconstruction of logic from computation.

• programs : some mathematical representation of proofs(-nets).
• types : formulas of linear logic.

– A⇒ B := {π | ∀π′ ∈ A, cut(π, π′) ∈ B)} (linear implication).
– π ⊥ π′ ⇐⇒ cut(π, π′) satisfies some P.
– A⊥ := {π | ∀π′ ∈ A, π ⊥ π′} (linear negation).
– Linear logic formulas satisfy A = A⊥⊥.

Transcendental Syntax (Girard, 2013). Improvements on GoI.

• programs : "Stellar Resolution" (Turing-complete).

• types : formulas of linear logic and more.

• Speaks about the "logic" of a computational model.

2/8

From Geometry of Interaction to Transcendental Syntax

Geometry of Interaction and Ludics (Girard). Reconstruction of logic from computation.

• programs : some mathematical representation of proofs(-nets).
• types : formulas of linear logic.

– A⇒ B := {π | ∀π′ ∈ A, cut(π, π′) ∈ B)} (linear implication).

– π ⊥ π′ ⇐⇒ cut(π, π′) satisfies some P.
– A⊥ := {π | ∀π′ ∈ A, π ⊥ π′} (linear negation).
– Linear logic formulas satisfy A = A⊥⊥.

Transcendental Syntax (Girard, 2013). Improvements on GoI.

• programs : "Stellar Resolution" (Turing-complete).

• types : formulas of linear logic and more.

• Speaks about the "logic" of a computational model.

2/8

From Geometry of Interaction to Transcendental Syntax

Geometry of Interaction and Ludics (Girard). Reconstruction of logic from computation.

• programs : some mathematical representation of proofs(-nets).
• types : formulas of linear logic.

– A⇒ B := {π | ∀π′ ∈ A, cut(π, π′) ∈ B)} (linear implication).
– π ⊥ π′ ⇐⇒ cut(π, π′) satisfies some P.

– A⊥ := {π | ∀π′ ∈ A, π ⊥ π′} (linear negation).
– Linear logic formulas satisfy A = A⊥⊥.

Transcendental Syntax (Girard, 2013). Improvements on GoI.

• programs : "Stellar Resolution" (Turing-complete).

• types : formulas of linear logic and more.

• Speaks about the "logic" of a computational model.

2/8

From Geometry of Interaction to Transcendental Syntax

Geometry of Interaction and Ludics (Girard). Reconstruction of logic from computation.

• programs : some mathematical representation of proofs(-nets).
• types : formulas of linear logic.

– A⇒ B := {π | ∀π′ ∈ A, cut(π, π′) ∈ B)} (linear implication).
– π ⊥ π′ ⇐⇒ cut(π, π′) satisfies some P.
– A⊥ := {π | ∀π′ ∈ A, π ⊥ π′} (linear negation).

– Linear logic formulas satisfy A = A⊥⊥.

Transcendental Syntax (Girard, 2013). Improvements on GoI.

• programs : "Stellar Resolution" (Turing-complete).

• types : formulas of linear logic and more.

• Speaks about the "logic" of a computational model.

2/8

From Geometry of Interaction to Transcendental Syntax

Geometry of Interaction and Ludics (Girard). Reconstruction of logic from computation.

• programs : some mathematical representation of proofs(-nets).
• types : formulas of linear logic.

– A⇒ B := {π | ∀π′ ∈ A, cut(π, π′) ∈ B)} (linear implication).
– π ⊥ π′ ⇐⇒ cut(π, π′) satisfies some P.
– A⊥ := {π | ∀π′ ∈ A, π ⊥ π′} (linear negation).
– Linear logic formulas satisfy A = A⊥⊥.

Transcendental Syntax (Girard, 2013). Improvements on GoI.

• programs : "Stellar Resolution" (Turing-complete).

• types : formulas of linear logic and more.

• Speaks about the "logic" of a computational model.

2/8

From Geometry of Interaction to Transcendental Syntax

Geometry of Interaction and Ludics (Girard). Reconstruction of logic from computation.

• programs : some mathematical representation of proofs(-nets).
• types : formulas of linear logic.

– A⇒ B := {π | ∀π′ ∈ A, cut(π, π′) ∈ B)} (linear implication).
– π ⊥ π′ ⇐⇒ cut(π, π′) satisfies some P.
– A⊥ := {π | ∀π′ ∈ A, π ⊥ π′} (linear negation).
– Linear logic formulas satisfy A = A⊥⊥.

Transcendental Syntax (Girard, 2013). Improvements on GoI.

• programs : "Stellar Resolution" (Turing-complete).

• types : formulas of linear logic and more.

• Speaks about the "logic" of a computational model.

2/8

From Geometry of Interaction to Transcendental Syntax

Geometry of Interaction and Ludics (Girard). Reconstruction of logic from computation.

• programs : some mathematical representation of proofs(-nets).
• types : formulas of linear logic.

– A⇒ B := {π | ∀π′ ∈ A, cut(π, π′) ∈ B)} (linear implication).
– π ⊥ π′ ⇐⇒ cut(π, π′) satisfies some P.
– A⊥ := {π | ∀π′ ∈ A, π ⊥ π′} (linear negation).
– Linear logic formulas satisfy A = A⊥⊥.

Transcendental Syntax (Girard, 2013). Improvements on GoI.

• programs : "Stellar Resolution" (Turing-complete).

• types : formulas of linear logic and more.

• Speaks about the "logic" of a computational model.

2/8

From Geometry of Interaction to Transcendental Syntax

Geometry of Interaction and Ludics (Girard). Reconstruction of logic from computation.

• programs : some mathematical representation of proofs(-nets).
• types : formulas of linear logic.

– A⇒ B := {π | ∀π′ ∈ A, cut(π, π′) ∈ B)} (linear implication).
– π ⊥ π′ ⇐⇒ cut(π, π′) satisfies some P.
– A⊥ := {π | ∀π′ ∈ A, π ⊥ π′} (linear negation).
– Linear logic formulas satisfy A = A⊥⊥.

Transcendental Syntax (Girard, 2013). Improvements on GoI.

• programs : "Stellar Resolution" (Turing-complete).

• types : formulas of linear logic and more.

• Speaks about the "logic" of a computational model.

2/8

From Geometry of Interaction to Transcendental Syntax

Geometry of Interaction and Ludics (Girard). Reconstruction of logic from computation.

• programs : some mathematical representation of proofs(-nets).
• types : formulas of linear logic.

– A⇒ B := {π | ∀π′ ∈ A, cut(π, π′) ∈ B)} (linear implication).
– π ⊥ π′ ⇐⇒ cut(π, π′) satisfies some P.
– A⊥ := {π | ∀π′ ∈ A, π ⊥ π′} (linear negation).
– Linear logic formulas satisfy A = A⊥⊥.

Transcendental Syntax (Girard, 2013). Improvements on GoI.

• programs : "Stellar Resolution" (Turing-complete).

• types : formulas of linear logic and more.

• Speaks about the "logic" of a computational model.
2/8

Stellar Resolution
Girard’s stars and constellations

ϕ1g(x)
+a(x)

−b(x)

ϕ2

−a(f(y)) +c(y)

Constellation (n stars)
= program
↓

Diagrams (maximal tilings)
↓

Constellation Ex()
= normal form

A reformulation of Robinson’s first-order resolution / Query-free logic programming.

3/8

Stellar Resolution
Girard’s stars and constellations

ϕ1g(x)
+a(x)

−b(x)

ϕ2

−a(f(y)) +c(y)

Constellation (n stars)
= program
↓

Diagrams (maximal tilings)
↓

Constellation Ex()
= normal form

A reformulation of Robinson’s first-order resolution / Query-free logic programming.

3/8

Stellar Resolution
Girard’s stars and constellations

ϕ1g(f(y))
+a(x)

−b(f(y))

ϕ2

−a(f(y))
+c(y)

Constellation (n stars)
= program
↓

Diagrams (maximal tilings)
↓

Constellation Ex()
= normal form

A reformulation of Robinson’s first-order resolution / Query-free logic programming.

3/8

Stellar Resolution
Girard’s stars and constellations

ϕ1 ∪ ϕ2g(f(y))
+c(y)

−b(f(y))

Constellation (n stars)
= program
↓

Diagrams (maximal tilings)
↓

Constellation Ex()
= normal form

A reformulation of Robinson’s first-order resolution / Query-free logic programming.

3/8

Stellar Resolution
Girard’s stars and constellations

ϕ1 ∪ ϕ2g(f(y))
+c(y)

−b(f(y))

Constellation (n stars)
= program
↓

Diagrams (maximal tilings)
↓

Constellation Ex()
= normal form

A reformulation of Robinson’s first-order resolution / Query-free logic programming.

3/8

Stellar Resolution
Girard’s stars and constellations

ϕ1 ∪ ϕ2g(f(y))
+c(y)

−b(f(y))

Constellation (n stars)
= program
↓

Diagrams (maximal tilings)
↓

Constellation Ex()
= normal form

A reformulation of Robinson’s first-order resolution / Query-free logic programming.

3/8

Stellar Resolution
Girard’s stars and constellations

ϕ1 ∪ ϕ2g(f(y))
+c(y)

−b(f(y))

Constellation (n stars)
= program
↓

Diagrams (maximal tilings)
↓

Constellation Ex()
= normal form

A reformulation of Robinson’s first-order resolution / Query-free logic programming.

3/8

Stellar Resolution
Automata and circuits unified

Generalised automata.
q0start q1 q2

0, 1

0 0

Transitions↔ binary stars [−a(c ·w, q),+a(w, q′)].
Run on a word↔ tiling/diagram.

Generalised circuits.

1 S

¬

∨ R

Gates (not)↔ star [−ci(x),−not(x, r),+cj(r)].
Circuit evaluation↔ execution of constellation.

Information flow inside a structure : pushdown/tree/alternating automata, Turing
machines, tile systems, ...

4/8

Stellar Resolution
Automata and circuits unified

Generalised automata.
q0start q1 q2

0, 1

0 0

Transitions↔ binary stars [−a(c ·w, q),+a(w, q′)].
Run on a word↔ tiling/diagram.

Generalised circuits.

1 S

¬

∨ R

Gates (not)↔ star [−ci(x),−not(x, r),+cj(r)].
Circuit evaluation↔ execution of constellation.

Information flow inside a structure : pushdown/tree/alternating automata, Turing
machines, tile systems, ...

4/8

Stellar Resolution
Automata and circuits unified

Generalised automata.
q0start q1 q2

0, 1

0 0

Transitions↔ binary stars [−a(c ·w, q),+a(w, q′)].
Run on a word↔ tiling/diagram.

Generalised circuits.

1 S

¬

∨ R

Gates (not)↔ star [−ci(x),−not(x, r),+cj(r)].
Circuit evaluation↔ execution of constellation.

Information flow inside a structure : pushdown/tree/alternating automata, Turing
machines, tile systems, ...

4/8

Stellar Resolution
Automata and circuits unified

Generalised automata.
q0start q1 q2

0, 1

0 0

Transitions↔ binary stars [−a(c ·w, q),+a(w, q′)].
Run on a word↔ tiling/diagram.

Generalised circuits.

1 S

¬

∨ R

Gates (not)↔ star [−ci(x),−not(x, r),+cj(r)].
Circuit evaluation↔ execution of constellation.

Information flow inside a structure : pushdown/tree/alternating automata, Turing
machines, tile systems, ...

4/8

Stellar Resolution
Automata and circuits unified

Generalised automata.
q0start q1 q2

0, 1

0 0

Transitions↔ binary stars [−a(c ·w, q),+a(w, q′)].
Run on a word↔ tiling/diagram.

Generalised circuits.

1 S

¬

∨ R

Gates (not)↔ star [−ci(x),−not(x, r),+cj(r)].
Circuit evaluation↔ execution of constellation.

Information flow inside a structure : pushdown/tree/alternating automata, Turing
machines, tile systems, ... 4/8

Realisability and interactive typing

We have a new model of computation. What can we do?

Reconstructing linear logic (Transcendental Syntax).

• Pre-types A a set of constellations (programs).

• Choose a binary orthogonality ⊥ for "correct interaction".

• Define A⊥ = { | ∀′ ∈ A, ⊥ ′} (linear negation / duality).

• Formulas/types : A such that A = A⊥⊥.

• Assembling types : A⊗ B = {A] B | A ∈ A,B ∈ B}⊥⊥.

• Deriving other connectives : A` B = (A⊥ ⊗ B⊥)⊥ and A(B = A⊥ ` B.

Various models of linear logic + a logical description of a model of computation.

5/8

Realisability and interactive typing

We have a new model of computation. What can we do?

Reconstructing linear logic (Transcendental Syntax).

• Pre-types A a set of constellations (programs).

• Choose a binary orthogonality ⊥ for "correct interaction".

• Define A⊥ = { | ∀′ ∈ A, ⊥ ′} (linear negation / duality).

• Formulas/types : A such that A = A⊥⊥.

• Assembling types : A⊗ B = {A] B | A ∈ A,B ∈ B}⊥⊥.

• Deriving other connectives : A` B = (A⊥ ⊗ B⊥)⊥ and A(B = A⊥ ` B.

Various models of linear logic + a logical description of a model of computation.

5/8

Realisability and interactive typing

We have a new model of computation. What can we do?

Reconstructing linear logic (Transcendental Syntax).

• Pre-types A a set of constellations (programs).

• Choose a binary orthogonality ⊥ for "correct interaction".

• Define A⊥ = { | ∀′ ∈ A, ⊥ ′} (linear negation / duality).

• Formulas/types : A such that A = A⊥⊥.

• Assembling types : A⊗ B = {A] B | A ∈ A,B ∈ B}⊥⊥.

• Deriving other connectives : A` B = (A⊥ ⊗ B⊥)⊥ and A(B = A⊥ ` B.

Various models of linear logic + a logical description of a model of computation.

5/8

Realisability and interactive typing

We have a new model of computation. What can we do?

Reconstructing linear logic (Transcendental Syntax).

• Pre-types A a set of constellations (programs).

• Choose a binary orthogonality ⊥ for "correct interaction".

• Define A⊥ = { | ∀′ ∈ A, ⊥ ′} (linear negation / duality).

• Formulas/types : A such that A = A⊥⊥.

• Assembling types : A⊗ B = {A] B | A ∈ A,B ∈ B}⊥⊥.

• Deriving other connectives : A` B = (A⊥ ⊗ B⊥)⊥ and A(B = A⊥ ` B.

Various models of linear logic + a logical description of a model of computation.

5/8

Realisability and interactive typing

We have a new model of computation. What can we do?

Reconstructing linear logic (Transcendental Syntax).

• Pre-types A a set of constellations (programs).

• Choose a binary orthogonality ⊥ for "correct interaction".

• Define A⊥ = { | ∀′ ∈ A, ⊥ ′} (linear negation / duality).

• Formulas/types : A such that A = A⊥⊥.

• Assembling types : A⊗ B = {A] B | A ∈ A,B ∈ B}⊥⊥.

• Deriving other connectives : A` B = (A⊥ ⊗ B⊥)⊥ and A(B = A⊥ ` B.

Various models of linear logic + a logical description of a model of computation.

5/8

Realisability and interactive typing

We have a new model of computation. What can we do?

Reconstructing linear logic (Transcendental Syntax).

• Pre-types A a set of constellations (programs).

• Choose a binary orthogonality ⊥ for "correct interaction".

• Define A⊥ = { | ∀′ ∈ A, ⊥ ′} (linear negation / duality).

• Formulas/types : A such that A = A⊥⊥.

• Assembling types : A⊗ B = {A] B | A ∈ A,B ∈ B}⊥⊥.

• Deriving other connectives : A` B = (A⊥ ⊗ B⊥)⊥ and A(B = A⊥ ` B.

Various models of linear logic + a logical description of a model of computation.

5/8

Realisability and interactive typing

We have a new model of computation. What can we do?

Reconstructing linear logic (Transcendental Syntax).

• Pre-types A a set of constellations (programs).

• Choose a binary orthogonality ⊥ for "correct interaction".

• Define A⊥ = { | ∀′ ∈ A, ⊥ ′} (linear negation / duality).

• Formulas/types : A such that A = A⊥⊥.

• Assembling types : A⊗ B = {A] B | A ∈ A,B ∈ B}⊥⊥.

• Deriving other connectives : A` B = (A⊥ ⊗ B⊥)⊥ and A(B = A⊥ ` B.

Various models of linear logic + a logical description of a model of computation.

5/8

Realisability and interactive typing

We have a new model of computation. What can we do?

Reconstructing linear logic (Transcendental Syntax).

• Pre-types A a set of constellations (programs).

• Choose a binary orthogonality ⊥ for "correct interaction".

• Define A⊥ = { | ∀′ ∈ A, ⊥ ′} (linear negation / duality).

• Formulas/types : A such that A = A⊥⊥.

• Assembling types : A⊗ B = {A] B | A ∈ A,B ∈ B}⊥⊥.

• Deriving other connectives : A` B = (A⊥ ⊗ B⊥)⊥ and A(B = A⊥ ` B.

Various models of linear logic + a logical description of a model of computation.

5/8

Realisability and interactive typing

We have a new model of computation. What can we do?

Reconstructing linear logic (Transcendental Syntax).

• Pre-types A a set of constellations (programs).

• Choose a binary orthogonality ⊥ for "correct interaction".

• Define A⊥ = { | ∀′ ∈ A, ⊥ ′} (linear negation / duality).

• Formulas/types : A such that A = A⊥⊥.

• Assembling types : A⊗ B = {A] B | A ∈ A,B ∈ B}⊥⊥.

• Deriving other connectives : A` B = (A⊥ ⊗ B⊥)⊥ and A(B = A⊥ ` B.

Various models of linear logic + a logical description of a model of computation.
5/8

Vague ideas of applications

(Unit) testing in logic
Generalising the correctness criterion

Transcendental Syntax. A constellation is a proof of A when :

(Tested constellation)
⊥DR ⊥DR . . . ⊥DR

(Danos-Regnier criterion) 1
t 2

t n
t

Unit testing and specifications.

• Unit testing : a function f is "correct" when f(ai) = bi for some (ai, bi).

• Specifications : a function f is labelled by A when it has some behaviour BH(A).

Transcendental Syntax.

• A constellation is correct w.r.t. A when it passes some tests in Tests(A).

• Adequation : is correct w.r.t. A =⇒ ∈ BH(A) with BH(A) = BH(A)⊥⊥.

6/8

(Unit) testing in logic
Generalising the correctness criterion

Transcendental Syntax. A constellation is a proof of A when :

(Tested constellation)
⊥DR ⊥DR . . . ⊥DR

(Danos-Regnier criterion) 1
t 2

t n
t

Unit testing and specifications.

• Unit testing : a function f is "correct" when f(ai) = bi for some (ai, bi).

• Specifications : a function f is labelled by A when it has some behaviour BH(A).

Transcendental Syntax.

• A constellation is correct w.r.t. A when it passes some tests in Tests(A).

• Adequation : is correct w.r.t. A =⇒ ∈ BH(A) with BH(A) = BH(A)⊥⊥.

6/8

(Unit) testing in logic
Generalising the correctness criterion

Transcendental Syntax. A constellation is a proof of A when :
(Tested constellation)

⊥DR ⊥DR . . . ⊥DR

(Danos-Regnier criterion) 1
t 2

t n
t

Unit testing and specifications.

• Unit testing : a function f is "correct" when f(ai) = bi for some (ai, bi).

• Specifications : a function f is labelled by A when it has some behaviour BH(A).

Transcendental Syntax.

• A constellation is correct w.r.t. A when it passes some tests in Tests(A).

• Adequation : is correct w.r.t. A =⇒ ∈ BH(A) with BH(A) = BH(A)⊥⊥.

6/8

(Unit) testing in logic
Generalising the correctness criterion

Transcendental Syntax. A constellation is a proof of A when :
(Tested constellation)

⊥DR ⊥DR . . . ⊥DR

(Danos-Regnier criterion) 1
t 2

t n
t

Unit testing and specifications.

• Unit testing : a function f is "correct" when f(ai) = bi for some (ai, bi).

• Specifications : a function f is labelled by A when it has some behaviour BH(A).

Transcendental Syntax.

• A constellation is correct w.r.t. A when it passes some tests in Tests(A).

• Adequation : is correct w.r.t. A =⇒ ∈ BH(A) with BH(A) = BH(A)⊥⊥.

6/8

(Unit) testing in logic
Generalising the correctness criterion

Transcendental Syntax. A constellation is a proof of A when :
(Tested constellation)

⊥DR ⊥DR . . . ⊥DR

(Danos-Regnier criterion) 1
t 2

t n
t

Unit testing and specifications.

• Unit testing : a function f is "correct" when f(ai) = bi for some (ai, bi).

• Specifications : a function f is labelled by A when it has some behaviour BH(A).

Transcendental Syntax.

• A constellation is correct w.r.t. A when it passes some tests in Tests(A).

• Adequation : is correct w.r.t. A =⇒ ∈ BH(A) with BH(A) = BH(A)⊥⊥.

6/8

(Unit) testing in logic
Generalising the correctness criterion

Transcendental Syntax. A constellation is a proof of A when :
(Tested constellation)

⊥DR ⊥DR . . . ⊥DR

(Danos-Regnier criterion) 1
t 2

t n
t

Unit testing and specifications.

• Unit testing : a function f is "correct" when f(ai) = bi for some (ai, bi).

• Specifications : a function f is labelled by A when it has some behaviour BH(A).

Transcendental Syntax.

• A constellation is correct w.r.t. A when it passes some tests in Tests(A).

• Adequation : is correct w.r.t. A =⇒ ∈ BH(A) with BH(A) = BH(A)⊥⊥.

6/8

(Unit) testing in logic
Generalising the correctness criterion

Transcendental Syntax. A constellation is a proof of A when :
(Tested constellation)

⊥DR ⊥DR . . . ⊥DR

(Danos-Regnier criterion) 1
t 2

t n
t

Unit testing and specifications.

• Unit testing : a function f is "correct" when f(ai) = bi for some (ai, bi).

• Specifications : a function f is labelled by A when it has some behaviour BH(A).

Transcendental Syntax.

• A constellation is correct w.r.t. A when it passes some tests in Tests(A).

• Adequation : is correct w.r.t. A =⇒ ∈ BH(A) with BH(A) = BH(A)⊥⊥.

6/8

(Unit) testing in logic
Generalising the correctness criterion

Transcendental Syntax. A constellation is a proof of A when :
(Tested constellation)

⊥DR ⊥DR . . . ⊥DR

(Danos-Regnier criterion) 1
t 2

t n
t

Unit testing and specifications.

• Unit testing : a function f is "correct" when f(ai) = bi for some (ai, bi).

• Specifications : a function f is labelled by A when it has some behaviour BH(A).

Transcendental Syntax.

• A constellation is correct w.r.t. A when it passes some tests in Tests(A).

• Adequation : is correct w.r.t. A =⇒ ∈ BH(A) with BH(A) = BH(A)⊥⊥.

6/8

(Unit) testing in logic
Generalising the correctness criterion

Transcendental Syntax. A constellation is a proof of A when :
(Tested constellation)

⊥DR ⊥DR . . . ⊥DR

(Danos-Regnier criterion) 1
t 2

t n
t

Unit testing and specifications.

• Unit testing : a function f is "correct" when f(ai) = bi for some (ai, bi).

• Specifications : a function f is labelled by A when it has some behaviour BH(A).

Transcendental Syntax.

• A constellation is correct w.r.t. A when it passes some tests in Tests(A).

• Adequation : is correct w.r.t. A =⇒ ∈ BH(A) with BH(A) = BH(A)⊥⊥.

6/8

(Unit) testing in logic
Generalising the correctness criterion

Transcendental Syntax. A constellation is a proof of A when :
(Tested constellation)

⊥DR ⊥DR . . . ⊥DR

(Danos-Regnier criterion) 1
t 2

t n
t

Unit testing and specifications.

• Unit testing : a function f is "correct" when f(ai) = bi for some (ai, bi).

• Specifications : a function f is labelled by A when it has some behaviour BH(A).

Transcendental Syntax.

• A constellation is correct w.r.t. A when it passes some tests in Tests(A).

• Adequation : is correct w.r.t. A =⇒ ∈ BH(A) with BH(A) = BH(A)⊥⊥. 6/8

Atypic typing and complexity

Typing outside λ-calculus. Automata, logic programs, circuits, tile systems, ...

�

basically information flow in a structure.

Implicit Computational Complexity (ICC). Capture classes with restrictions on
constellations.

• Previous works of Aubert & Bagnol.

�

Capture of classes P and (N)L (with pointer machines).

Descriptive complexity. Capture classes with formulas.

• P and NP as classes of formulas (Immerman, Fagin).

7/8

Atypic typing and complexity

Typing outside λ-calculus. Automata, logic programs, circuits, tile systems, ...

�

basically information flow in a structure.

Implicit Computational Complexity (ICC). Capture classes with restrictions on
constellations.

• Previous works of Aubert & Bagnol.

�

Capture of classes P and (N)L (with pointer machines).

Descriptive complexity. Capture classes with formulas.

• P and NP as classes of formulas (Immerman, Fagin).

7/8

Atypic typing and complexity

Typing outside λ-calculus. Automata, logic programs, circuits, tile systems, ...

�

basically information flow in a structure.

Implicit Computational Complexity (ICC). Capture classes with restrictions on
constellations.

• Previous works of Aubert & Bagnol.

�

Capture of classes P and (N)L (with pointer machines).

Descriptive complexity. Capture classes with formulas.

• P and NP as classes of formulas (Immerman, Fagin).

7/8

Atypic typing and complexity

Typing outside λ-calculus. Automata, logic programs, circuits, tile systems, ...

�

basically information flow in a structure.

Implicit Computational Complexity (ICC). Capture classes with restrictions on
constellations.

• Previous works of Aubert & Bagnol.

�

Capture of classes P and (N)L (with pointer machines).

Descriptive complexity. Capture classes with formulas.

• P and NP as classes of formulas (Immerman, Fagin).

7/8

Atypic typing and complexity

Typing outside λ-calculus. Automata, logic programs, circuits, tile systems, ...

�

basically information flow in a structure.

Implicit Computational Complexity (ICC). Capture classes with restrictions on
constellations.

• Previous works of Aubert & Bagnol.

�

Capture of classes P and (N)L (with pointer machines).

Descriptive complexity. Capture classes with formulas.

• P and NP as classes of formulas (Immerman, Fagin).

7/8

Atypic typing and complexity

Typing outside λ-calculus. Automata, logic programs, circuits, tile systems, ...

�

basically information flow in a structure.

Implicit Computational Complexity (ICC). Capture classes with restrictions on
constellations.

• Previous works of Aubert & Bagnol.

�

Capture of classes P and (N)L (with pointer machines).

Descriptive complexity. Capture classes with formulas.

• P and NP as classes of formulas (Immerman, Fagin).

7/8

Atypic typing and complexity

Typing outside λ-calculus. Automata, logic programs, circuits, tile systems, ...

�

basically information flow in a structure.

Implicit Computational Complexity (ICC). Capture classes with restrictions on
constellations.

• Previous works of Aubert & Bagnol.

�

Capture of classes P and (N)L (with pointer machines).

Descriptive complexity. Capture classes with formulas.

• P and NP as classes of formulas (Immerman, Fagin).

7/8

Conclusion

A new model of computation : Stellar Resolution.

�

Turing-complete, generalised circuit-automata-logic programs.

�

Speaks about (unit) testing with orthogonality.

�

Speaks about the behaviour/specification of programs with realisability types.

Thank you for listening to my talk.

8/8

Conclusion

A new model of computation : Stellar Resolution.

�

Turing-complete, generalised circuit-automata-logic programs.

�

Speaks about (unit) testing with orthogonality.

�

Speaks about the behaviour/specification of programs with realisability types.

Thank you for listening to my talk.

8/8

Conclusion

A new model of computation : Stellar Resolution.

�

Turing-complete, generalised circuit-automata-logic programs.

�

Speaks about (unit) testing with orthogonality.

�

Speaks about the behaviour/specification of programs with realisability types.

Thank you for listening to my talk.

8/8

Conclusion

A new model of computation : Stellar Resolution.

�

Turing-complete, generalised circuit-automata-logic programs.

�

Speaks about (unit) testing with orthogonality.
�

Speaks about the behaviour/specification of programs with realisability types.

Thank you for listening to my talk.

8/8

Conclusion

A new model of computation : Stellar Resolution.

�

Turing-complete, generalised circuit-automata-logic programs.

�

Speaks about (unit) testing with orthogonality.
�

Speaks about the behaviour/specification of programs with realisability types.

Thank you for listening to my talk.

8/8

	Vague ideas of applications

