Transcendental Syntax

A toolbox for the interface logic-computation

LIPN – Université Sorbonne Paris Nord Boris Eng

Realisability/logical relations. [Riba, LICS 2007].

• programs : pure λ -calculus $t, u ::= x \mid \lambda x.t \mid tu$.

- programs : pure λ -calculus $t, u ::= x \mid \lambda x.t \mid tu$.
- types : simple types as set of terms $t : A \iff t \in A$.

- programs : pure λ -calculus $t, u ::= x \mid \lambda x.t \mid tu$.
- types : simple types as set of terms $t : A \iff t \in A$.
 - base type $\mathbf{o} := SN$ (set of terminating programs).

- programs : pure λ -calculus $t, u ::= x \mid \lambda x.t \mid tu$.
- types : simple types as set of terms $t : A \iff t \in A$.
 - base type $\mathbf{o} := SN$ (set of terminating programs).
 - $\mathbf{A} \Rightarrow \mathbf{B} = \{t \mid \forall u \in \mathbf{A}, tu \in \mathbf{B}\}$

Geometry of Interaction and Ludics (Girard). Reconstruction of logic from computation.

• programs : some mathematical representation of proofs(-nets).

- programs : some mathematical representation of proofs(-nets).
- types : formulas of linear logic.

- programs : some mathematical representation of proofs(-nets).
- types : formulas of linear logic.
 - $A \Rightarrow B := \{\pi \mid \forall \pi' \in A, cut(\pi, \pi') \in B)\}$ (linear implication).

- programs : some mathematical representation of proofs(-nets).
- types : formulas of linear logic.
 - $A \Rightarrow B := \{\pi \mid \forall \pi' \in A, cut(\pi, \pi') \in B)\}$ (linear implication).
 - $\pi \perp \pi' \iff \operatorname{cut}(\pi, \pi')$ satisfies some *P*.

- programs : some mathematical representation of proofs(-nets).
- types : formulas of linear logic.
 - $A \Rightarrow B := \{\pi \mid \forall \pi' \in A, cut(\pi, \pi') \in B)\}$ (linear implication).
 - $\pi \perp \pi' \iff \operatorname{cut}(\pi, \pi')$ satisfies some *P*.
 - $A^{\perp} := \{ \pi \mid \forall \pi' \in A, \pi \perp \pi' \}$ (linear negation).

- programs : some mathematical representation of proofs(-nets).
- types : formulas of linear logic.
 - $A \Rightarrow B := \{\pi \mid \forall \pi' \in A, cut(\pi, \pi') \in B)\}$ (linear implication).
 - $\pi \perp \pi' \iff \operatorname{cut}(\pi, \pi')$ satisfies some *P*.
 - $A^{\perp} := \{ \pi \mid \forall \pi' \in A, \pi \perp \pi' \}$ (linear negation).
 - Linear logic formulas satisfy $\mathbf{A} = \mathbf{A}^{\perp \perp}$.

Geometry of Interaction and Ludics (Girard). Reconstruction of logic from computation.

- programs : some mathematical representation of proofs(-nets).
- types : formulas of linear logic.
 - $A \Rightarrow B := \{\pi \mid \forall \pi' \in A, cut(\pi, \pi') \in B)\}$ (linear implication).
 - $\pi \perp \pi' \iff \operatorname{cut}(\pi, \pi')$ satisfies some *P*.
 - $A^{\perp} := \{ \pi \mid \forall \pi' \in A, \pi \perp \pi' \}$ (linear negation).
 - Linear logic formulas satisfy $\mathbf{A} = \mathbf{A}^{\perp \perp}$.

Transcendental Syntax (Girard, 2013). Improvements on Gol.

Geometry of Interaction and Ludics (Girard). Reconstruction of logic from computation.

- programs : some mathematical representation of proofs(-nets).
- types : formulas of linear logic.
 - $A \Rightarrow B := \{\pi \mid \forall \pi' \in A, cut(\pi, \pi') \in B)\}$ (linear implication).
 - $\pi \perp \pi' \iff \operatorname{cut}(\pi, \pi')$ satisfies some *P*.
 - $A^{\perp} := \{ \pi \mid \forall \pi' \in A, \pi \perp \pi' \}$ (linear negation).
 - Linear logic formulas satisfy $\mathbf{A} = \mathbf{A}^{\perp \perp}$.

Transcendental Syntax (Girard, 2013). Improvements on Gol.

• programs : "Stellar Resolution" (Turing-complete).

Geometry of Interaction and Ludics (Girard). Reconstruction of logic from computation.

- programs : some mathematical representation of proofs(-nets).
- types : formulas of linear logic.
 - $A \Rightarrow B := \{\pi \mid \forall \pi' \in A, cut(\pi, \pi') \in B)\}$ (linear implication).
 - $\pi \perp \pi' \iff \operatorname{cut}(\pi, \pi')$ satisfies some P.
 - $A^{\perp} := \{ \pi \mid \forall \pi' \in A, \pi \perp \pi' \}$ (linear negation).
 - Linear logic formulas satisfy $\mathbf{A} = \mathbf{A}^{\perp \perp}$.

Transcendental Syntax (Girard, 2013). Improvements on Gol.

- programs : "Stellar Resolution" (Turing-complete).
- types : formulas of linear logic and more.

Geometry of Interaction and Ludics (Girard). Reconstruction of logic from computation.

- programs : some mathematical representation of proofs(-nets).
- types : formulas of linear logic.
 - $A \Rightarrow B := \{\pi \mid \forall \pi' \in A, cut(\pi, \pi') \in B)\}$ (linear implication).
 - $\pi \perp \pi' \iff \operatorname{cut}(\pi, \pi')$ satisfies some *P*.
 - $A^{\perp} := \{ \pi \mid \forall \pi' \in A, \pi \perp \pi' \}$ (linear negation).
 - Linear logic formulas satisfy $\mathbf{A} = \mathbf{A}^{\perp \perp}$.

Transcendental Syntax (Girard, 2013). Improvements on Gol.

- programs : "Stellar Resolution" (Turing-complete).
- types : formulas of linear logic and more.
- Speaks about the "logic" of a computational model.

$$g(x) \bullet \oint_{1} +a(x) \bullet \\ -b(x) \bullet$$

$$-a(f(y)) + c(y)$$

$$g(x) \bullet (\phi_1) \bullet (\phi_2) \bullet (\phi_2)$$

$$g(f(y)) \bullet (\phi_1) \bullet (\phi_2) \bullet +c(y) \\ -b(f(y)) \bullet (\phi_1) \bullet (\phi_2) \bullet +c(y) \\ -b(f(y)) \bullet (\phi_1) \bullet (\phi_2) \bullet (\phi_2) \bullet +c(y) \\ -b(f(y)) \bullet (\phi_1) \bullet (\phi_2) \bullet ($$

+c(y)g(f(y)) • $\phi_1 \cup \phi_2$ -b(f(y))

Girard's stars and constellations

+c(y) $\phi_1 \cup \phi_2$ g(f(y))-b(f(y))

Constellation Φ (*n* stars) = program \downarrow Diagrams (maximal tilings) \downarrow Constellation Ex(Φ) = normal form

Girard's stars and constellations

+c(y) $\phi_1 \cup \phi_2$ g(f(y))-b(f(y))

Constellation Φ (*n* stars) = program \downarrow Diagrams (maximal tilings) \downarrow Constellation Ex(Φ) = normal form

Girard's stars and constellations

+c(y)g(f(y)) $\phi_1 \cup \phi_2$ -b(f(y))

Constellation Φ (*n* stars) = program \downarrow Diagrams (maximal tilings) \downarrow Constellation Ex(Φ) = normal form

A reformulation of Robinson's first-order resolution / Query-free logic programming.

Automata and circuits unified

Automata and circuits unified

Automata and circuits unified

Generalised circuits.

Automata and circuits unified

Generalised circuits.

Gates (not) \leftrightarrow star $[-c_i(x), -not(x, r), +c_j(r)]$. Circuit evaluation \leftrightarrow execution of constellation.

Automata and circuits unified

Generalised automata.

$$a_{q_0} \xrightarrow{0, 1} \qquad 0 \xrightarrow{q_1} \xrightarrow{0, q_2} \qquad 0 \xrightarrow{q_1} \xrightarrow{0, q_2} \qquad 0 \xrightarrow{q_2} \qquad 0 \xrightarrow$$

Generalised circuits.

Gates (not) \leftrightarrow star $[-c_i(x), -not(x, r), +c_j(r)]$. Circuit evaluation \leftrightarrow execution of constellation.

Information flow inside a structure : pushdown/tree/alternating automata, Turing machines, tile systems, ...

We have a new model of computation. What can we do?

We have a new model of computation. What can we do?

We have a new model of computation. What can we do?

Reconstructing linear logic (Transcendental Syntax).

• Pre-types A a set of constellations (programs).

We have a new model of computation. What can we do?

- Pre-types A a set of constellations (programs).
- Choose a binary orthogonality \perp for "correct interaction".

We have a new model of computation. What can we do?

- Pre-types A a set of constellations (programs).
- Choose a binary orthogonality \perp for "correct interaction".
- Define $A^{\perp} = \{ \Phi \mid \forall \Phi' \in A, \Phi \perp \Phi' \}$ (linear negation / duality).

We have a new model of computation. What can we do?

- Pre-types A a set of constellations (programs).
- Choose a binary orthogonality \perp for "correct interaction".
- Define $A^{\perp} = \{ \Phi \mid \forall \Phi' \in A, \Phi \perp \Phi' \}$ (linear negation / duality).
- Formulas/types : A such that $A = A^{\perp \perp}$.

We have a new model of computation. What can we do?

- Pre-types A a set of constellations (programs).
- Choose a binary orthogonality \perp for "correct interaction".
- Define $A^{\perp} = \{ \Phi \mid \forall \Phi' \in A, \Phi \perp \Phi' \}$ (linear negation / duality).
- Formulas/types : A such that $A = A^{\perp \perp}$.
- Assembling types : $\mathbf{A} \otimes \mathbf{B} = \{ \Phi_A \uplus \Phi_B \mid \Phi_A \in \mathbf{A}, \Phi_B \in \mathbf{B} \}^{\perp \perp}$.

We have a new model of computation. What can we do?

- Pre-types A a set of constellations (programs).
- Choose a binary orthogonality \perp for "correct interaction".
- Define $A^{\perp} = \{ \Phi \mid \forall \Phi' \in A, \Phi \perp \Phi' \}$ (linear negation / duality).
- Formulas/types : A such that $A = A^{\perp \perp}$.
- Assembling types : $\mathbf{A} \otimes \mathbf{B} = \{ \Phi_A \uplus \Phi_B \mid \Phi_A \in \mathbf{A}, \Phi_B \in \mathbf{B} \}^{\perp \perp}$.
- Deriving other connectives : $A \Im B = (A^{\perp} \otimes B^{\perp})^{\perp}$ and $A \multimap B = A^{\perp} \Im B$.

We have a new model of computation. What can we do?

Reconstructing linear logic (Transcendental Syntax).

- Pre-types A a set of constellations (programs).
- Choose a binary orthogonality \perp for "correct interaction".
- Define $A^{\perp} = \{ \Phi \mid \forall \Phi' \in A, \Phi \perp \Phi' \}$ (linear negation / duality).
- Formulas/types : A such that $A = A^{\perp \perp}$.
- Assembling types : $\mathbf{A} \otimes \mathbf{B} = \{ \Phi_A \uplus \Phi_B \mid \Phi_A \in \mathbf{A}, \Phi_B \in \mathbf{B} \}^{\perp \perp}$.
- Deriving other connectives : $A \Im B = (A^{\perp} \otimes B^{\perp})^{\perp}$ and $A \multimap B = A^{\perp} \Im B$.

Various models of linear logic + a logical description of a model of computation.

Vague ideas of applications

Generalising the correctness criterion

Transcendental Syntax. A constellation Φ is a proof of A when :

Generalising the correctness criterion

Transcendental Syntax. A constellation Φ is a proof of A when :

(Danos-Regnier criterion) $\Phi_t^1 = \Phi_t^2 = \Phi_t^n$

Generalising the correctness criterion

Transcendental Syntax. A constellation Φ is a proof of A when :

(Tested constellation)	Φ	Φ	Φ
(Danos-Regnier criterion)	Φ_t^1	Φ_t^2	Φ^n_t

Generalising the correctness criterion

Transcendental Syntax. A constellation Φ is a proof of A when :

(Tested constellation)	Φ	Φ	Φ
	\perp_{DR}	\perp_{DR}	 \perp_{DR}
(Danos-Regnier criterion)	$\mathbf{\Phi}_t^1$	$\mathbf{\Phi}_t^2$	$\mathbf{\Phi}^n_t$

Generalising the correctness criterion

Transcendental Syntax. A constellation Φ is a proof of A when :

(Tested constellation) Φ Φ \perp_{DR} \perp_{DR} \perp_{DR} \ldots (Danos-Regnier criterion) Φ_t^1 Φ_t^2 Φ_t^n

Unit testing and specifications.

Generalising the correctness criterion

Transcendental Syntax. A constellation Φ is a proof of A when :

(Tested constellation)	Φ	Φ	Φ
	\perp_{DR}	\perp_{DR}	 \perp_{DR}
(Danos-Regnier criterion)	$oldsymbol{\Phi}_t^1$	$\mathbf{\Phi}_t^2$	$\mathbf{\Phi}^n_t$

Unit testing and specifications.

• Unit testing : a function f is "correct" when $f(a_i) = b_i$ for some (a_i, b_i) .

Generalising the correctness criterion

Transcendental Syntax. A constellation Φ is a proof of A when :

(Tested constellation)	Φ	Φ	Φ
	\perp_{DR}	\perp_{DR}	 \perp_{DR}
(Danos-Regnier criterion)	${oldsymbol{\Phi}}^1_t$	$\mathbf{\Phi}_t^2$	$\mathbf{\Phi}^n_t$

Unit testing and specifications.

- Unit testing : a function f is "correct" when $f(a_i) = b_i$ for some (a_i, b_i) .
- Specifications : a function f is labelled by A when it has some behaviour BH(A).

Generalising the correctness criterion

Transcendental Syntax. A constellation Φ is a proof of A when :

(Tested constellation)	Φ	Φ	Φ
	\perp_{DR}	\perp_{DR}	 \perp_{DR}
(Danos-Regnier criterion)	$\mathbf{\Phi}_t^1$	$\mathbf{\Phi}_t^2$	$\mathbf{\Phi}^n_t$

Unit testing and specifications.

- Unit testing : a function f is "correct" when $f(a_i) = b_i$ for some (a_i, b_i) .
- Specifications : a function f is labelled by A when it has some behaviour BH(A).

Transcendental Syntax.

Generalising the correctness criterion

Transcendental Syntax. A constellation Φ is a proof of A when :

(Tested constellation)	Φ	Φ	Φ
	\perp_{DR}	\perp_{DR}	 \perp_{DR}
(Danos-Regnier criterion)	$\mathbf{\Phi}_t^1$	$\mathbf{\Phi}_t^2$	$\mathbf{\Phi}^n_t$

Unit testing and specifications.

- Unit testing : a function f is "correct" when $f(a_i) = b_i$ for some (a_i, b_i) .
- Specifications : a function f is labelled by A when it has some behaviour BH(A).

Transcendental Syntax.

• A constellation Φ is correct w.r.t. A when it passes some tests in Tests(A).

Generalising the correctness criterion

Transcendental Syntax. A constellation Φ is a proof of A when :

(Tested constellation)	Φ	Φ	Φ
	\perp_{DR}	\perp_{DR}	 \perp_{DR}
(Danos-Regnier criterion)	$\mathbf{\Phi}_t^1$	$\mathbf{\Phi}_t^2$	$\mathbf{\Phi}^n_t$

Unit testing and specifications.

- Unit testing : a function f is "correct" when $f(a_i) = b_i$ for some (a_i, b_i) .
- Specifications : a function f is labelled by A when it has some behaviour BH(A).

Transcendental Syntax.

- A constellation Φ is correct w.r.t. A when it passes some tests in Tests(A).
- Adequation : Φ is correct w.r.t. $A \Longrightarrow \Phi \in BH(A)$ with $BH(A) = BH(A)^{\perp \perp}$.

Typing outside λ **-calculus.** Automata, logic programs, circuits, tile systems, ...

Typing outside λ -calculus. Automata, logic programs, circuits, tile systems, ...

↓ basically information flow in a structure.

Typing outside λ -calculus. Automata, logic programs, circuits, tile systems, ... basically information flow in a structure.

Implicit Computational Complexity (ICC). Capture classes with restrictions on constellations.

Typing outside λ -calculus. Automata, logic programs, circuits, tile systems, ... basically information flow in a structure.

Implicit Computational Complexity (ICC). Capture classes with restrictions on constellations.

• Previous works of Aubert & Bagnol.

Typing outside λ -calculus. Automata, logic programs, circuits, tile systems, ... basically information flow in a structure.

Implicit Computational Complexity (ICC). Capture classes with restrictions on constellations.

- Previous works of Aubert & Bagnol.
 - └→ Capture of classes **P** and **(N)L** (with pointer machines).

Typing outside λ -calculus. Automata, logic programs, circuits, tile systems, ... basically information flow in a structure.

Implicit Computational Complexity (ICC). Capture classes with restrictions on constellations.

- Previous works of Aubert & Bagnol.
 - └→ Capture of classes **P** and **(N)L** (with pointer machines).

Descriptive complexity. Capture classes with formulas.

Typing outside λ -calculus. Automata, logic programs, circuits, tile systems, ... basically information flow in a structure.

Implicit Computational Complexity (ICC). Capture classes with restrictions on constellations.

- Previous works of Aubert & Bagnol.
 - └→ Capture of classes **P** and **(N)L** (with pointer machines).

Descriptive complexity. Capture classes with formulas.

• P and NP as classes of formulas (Immerman, Fagin).

A new model of computation : Stellar Resolution.

A new model of computation : Stellar Resolution.

└→ Turing-complete, generalised circuit-automata-logic programs.

A new model of computation : Stellar Resolution.

- ↓ Turing-complete, generalised circuit-automata-logic programs.
- └→ Speaks about (unit) testing with orthogonality.

A new model of computation : Stellar Resolution.

- └→ Turing-complete, generalised circuit-automata-logic programs.
- └→ Speaks about (unit) testing with orthogonality.
- └→ Speaks about the behaviour/specification of programs with realisability types.

A new model of computation : Stellar Resolution.

- └→ Turing-complete, generalised circuit-automata-logic programs.
- └→ Speaks about (unit) testing with orthogonality.
- └→ Speaks about the behaviour/specification of programs with realisability types.

Thank you for listening to my talk.