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L Goal : study the dynamics of linear logic from computation (operator algebras).

Transcendental Syntax [Gol VI, 2013] : the successor.

L Goal : linear logic (proof-nets) as emerging from computation without semantics.
L. Computational bricks : "stellar resolution" (not the only possibility).

L, Logical correctness : by symmetric computational testing.
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Between tilings and logic programming
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Stellar Resolution
Between tilings and logic programming

"Flexible" tiles [stars] with (un)polarised terms [rays]. Group as [constellations].

S < *".(f}__/,,:affc.m

—b(x)

Evaluation : link-contraction by Robinson’s Resolution rule.

Execution : construct all possible connected & maximal tilings then evaluate them.
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Encoding proof-structures
Logical content of proofs

O T IO
1 2 3 4

5 6
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f\l*,éa
~ o<« ®

cut

Danos-Regnier correctness : is axioms+test a tree for any test?

Stellar logical correctness : does Ex(@? C] @;St(p) satisfy some property P?

L MLL: [Ex(®% @ d>test)|—1
L MLL+MIX : Ex(<I>aXd>teSt ) terminates.
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Encoding proof-structures
Logical content of proofs

ax ax ax
0 T 7
1 2 3 4 5 6
N/
2L ®
v v
7 8
N J

cut

ax ax ax
0 T £
1 2 3 4 5 6
N N
AR ®
v v
7 8
N J

cut

Danos-Regnier correctness : is axioms+test a tree for any test?
Stellar logical correctness : does Ex(@? C] @;St(p) satisfy some property P?

L MLL: [Ex(®% @ d>test)|—1
L MLL+MIX : Ex(<I>aXd='teSt ) terminates.

Orthogonality. Ex(®; W $,) satisfies P < &; L &,.

4/6



Two notions of type
Unified in the same framework

Types as labels (type theory). A, B ::= X; | X’.l |A® B| A% B.

5/6



Two notions of type
Unified in the same framework

Types as labels (type theory). A, B ::= X; | X’.J- |A® B| A% B.
L A — Tests(A) finite ® logically correct <= @ L Tests(A).

5/6



Two notions of type
Unified in the same framework

Types as labels (type theory). A, B ::= X; | X’.J- |A® B| A% B.
L A — Tests(A) finite ® logically correct <= @ L Tests(A).

Types as behaviour classes (realisability).

5/6



Two notions of type
Unified in the same framework

Types as labels (type theory). A, B ::= X; | X’_J- |A® B| A% B.

L A — Tests(A) finite ® logically correct <= @ L Tests(A).

Types as behaviour classes (realisability).

e Pre-type : set of constellation A;

5/6



Two notions of type
Unified in the same framework

Types as labels (type theory). A, B ::= X; | X’_J- |A® B| A% B.

L A — Tests(A) finite ® logically correct <= @ L Tests(A).

Types as behaviour classes (realisability).
e Pre-type : set of constellation A;

e Orthogonal : AL (dual constellations) ;

5/6



Two notions of type
Unified in the same framework

Types as labels (type theory). A, B ::= X; | X’_J- |A® B| A% B.
L A — Tests(A) finite ® logically correct <= @ L Tests(A).

Types as behaviour classes (realisability).
e Pre-type : set of constellation A;

e Orthogonal : AL (dual constellations) ; Conduct : A = ALL;

5/6



Two notions of type
Unified in the same framework

Types as labels (type theory). A, B ::= X; | X’_J- |A® B| A% B.
L A~ Tests(A) finite ® logically correct &< & L Tests(A).

Types as behaviour classes (realisability).
e Pre-type : set of constellation A;
e Orthogonal : AL (dual constellations) ; Conduct : A = ALL;

o Tensor:A® B= {®, & &g, &, € A, &g € B}LL.

5/6



Two notions of type
Unified in the same framework

Types as labels (type theory). A, B ::= X; | X’_J- |A® B| A% B.
L A~ Tests(A) finite ® logically correct &< & L Tests(A).

Types as behaviour classes (realisability).
e Pre-type : set of constellation A;
e Orthogonal : A< (dual constellations); Conduct : A = ALL;
o Tensor:A® B= {®, & &g, &, € A, &g € B}LL.

Infinitely many (sub)types + ® € A usually undecidable vs ® : A usually decidable.

5/6



Two notions of type
Unified in the same framework

Types as labels (type theory). A, B ::= X; | X’_J- |A® B| A% B.
L A~ Tests(A) finite ® logically correct &< & L Tests(A).

Types as behaviour classes (realisability).
e Pre-type : set of constellation A;
e Orthogonal : A< (dual constellations); Conduct : A = ALL;

o Tensor:A® B= {®, & &g, &, € A, &g € B}LL.

Infinitely many (sub)types + ® € A usually undecidable vs ® : A usually decidable.

Related by adequacy : Tests(A)+ C A.
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Technical developement

Current works / In progress.
e formal definition of stellar resolution & properties;
e encoding of several models (automata, circuits, tiling models, ...);

e model of MLL(+MIX) and IMELL (Intuitionistic exponentials);

Future works.
e New point of view for first/second order logic + additives + neutrals;

e Implicit computational complexity analysis.

Thank you for listening.
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