A gentle introduction to Girard's Transcendental Syntax

.

LIPN - Université Sorbonne Paris Nord

Boris Eng Thomas Seiller

Geometry of Interaction (Gol)

A lot of definitions...But in our case :

Geometry of Interaction (Gol)

A lot of definitions...But in our case :

Girard's original Geometry of Interaction [Gol I, 1989].

Geometry of Interaction (Gol)

A lot of definitions...But in our case :

Girard's original Geometry of Interaction [Gol I, 1989].

Goal : study the dynamics of linear logic from computation (operator algebras).

Geometry of Interaction (Gol)

A lot of definitions...But in our case :

Girard's original Geometry of Interaction [Gol I, 1989].

Goal : study the dynamics of linear logic from computation (operator algebras).

Transcendental Syntax [Gol VI, 2013] : the successor.

Geometry of Interaction (Gol)

A lot of definitions...But in our case :

Girard's original Geometry of Interaction [Gol I, 1989].

Goal : study the dynamics of linear logic from computation (operator algebras).

Transcendental Syntax [Gol VI, 2013] : the successor.

Goal : linear logic (proof-nets) as emerging from computation without semantics.

Geometry of Interaction (Gol)

A lot of definitions...But in our case :

Girard's original Geometry of Interaction [Gol I, 1989].

Goal : study the dynamics of linear logic from computation (operator algebras).

Transcendental Syntax [Gol VI, 2013] : the successor.

- **Goal** : linear logic (proof-nets) as emerging from computation without semantics.
- └→ **Computational bricks** : "stellar resolution" (not the only possibility).

Geometry of Interaction (Gol)

A lot of definitions...But in our case :

Girard's original Geometry of Interaction [Gol I, 1989].

Goal : study the dynamics of linear logic from computation (operator algebras).

Transcendental Syntax [Gol VI, 2013] : the successor.

- **Goal** : linear logic (proof-nets) as emerging from computation without semantics.
- └→ **Computational bricks** : "stellar resolution" (not the only possibility).
- └→ Logical correctness : by symmetric computational testing.

Between tilings and logic programming

"Flexible" tiles [stars] with (un)polarised terms [rays]. Group as [constellations].

Between tilings and logic programming

"Flexible" tiles [stars] with (un)polarised terms [rays]. Group as [constellations]. $g(x) \bullet (\phi_1) \bullet (\phi_2) \bullet$

Between tilings and logic programming

"Flexible" tiles [stars] with (un)polarised terms [rays]. Group as [constellations]. $g(x) \bullet \phi_1 + a(x) - a(f(y)) + c(y)$ $-b(x) \bullet \phi_2 + b(x) + b($

Evaluation : link-contraction by Robinson's Resolution rule.

Between tilings and logic programming

"Flexible" tiles [stars] with (un)polarised terms [rays]. Group as [constellations]. $g(x) \bullet (\phi_1) \bullet (\phi_2) \bullet$

Evaluation : link-contraction by Robinson's Resolution rule.

Execution : construct all possible connected & maximal tilings then evaluate them.

Logical content of proofs

Logical content of proofs

Danos-Regnier correctness : is axioms+test a tree for any test?

Logical content of proofs

Danos-Regnier correctness : is axioms+test a tree for any test?

Stellar logical correctness : does $Ex(\Phi_{\mathscr{S}}^{ax} \uplus \Phi_{\mathscr{S}, \varphi}^{test})$ satisfy some property *P*?

Logical content of proofs

Danos-Regnier correctness : is axioms+test a tree for any test?

Stellar logical correctness : does $\operatorname{Ex}(\Phi_{\mathscr{S}}^{\operatorname{ax}} \uplus \Phi_{\mathscr{S},\varphi}^{\operatorname{test}})$ satisfy some property *P*? \downarrow MLL : $|\operatorname{Ex}(\Phi_{\mathscr{S}}^{\operatorname{ax}} \uplus \Phi_{\mathscr{S},\varphi}^{\operatorname{test}})| = 1.$

Logical content of proofs

Danos-Regnier correctness : is axioms+test a tree for any test?

Stellar logical correctness : does $Ex(\Phi_{\mathscr{G}}^{ax} \uplus \Phi_{\mathscr{G},\varphi}^{test})$ satisfy some property *P*? $\downarrow MLL : |Ex(\Phi_{\mathscr{G}}^{ax} \uplus \Phi_{\mathscr{G},\varphi}^{test})| = 1.$ $\downarrow MLL+MIX : Ex(\Phi_{\mathscr{G}}^{ax} \Phi_{\mathscr{G},\varphi}^{test})$ terminates.

Logical content of proofs

Danos-Regnier correctness : is axioms+test a tree for any test?

Stellar logical correctness : does $\operatorname{Ex}(\Phi_{\mathscr{G}}^{\operatorname{ax}} \uplus \Phi_{\mathscr{G},\varphi}^{\operatorname{test}})$ satisfy some property *P*? $\downarrow MLL : |\operatorname{Ex}(\Phi_{\mathscr{G}}^{\operatorname{ax}} \uplus \Phi_{\mathscr{G},\varphi}^{\operatorname{test}})| = 1.$ $\downarrow MLL+MIX : \operatorname{Ex}(\Phi_{\mathscr{G}}^{\operatorname{ax}} \Phi_{\mathscr{G},\varphi}^{\operatorname{test}})$ terminates.

Orthogonality. $Ex(\Phi_1 \uplus \Phi_2)$ satisfies $P \iff \Phi_1 \perp \Phi_2$.

Unified in the same framework

Types as labels (type theory). A, $B ::= X_i | X_i^{\perp} | A \otimes B | A \Re B$.

Unified in the same framework

Types as labels (type theory). $A, B ::= X_i \mid X_i^{\perp} \mid A \otimes B \mid A \gg B.$ $\downarrow A \mapsto \text{Tests}(A)$ finite Φ logically correct $\iff \Phi \perp \text{Tests}(A).$

Unified in the same framework

Types as labels (type theory). $A, B ::= X_i | X_i^{\perp} | A \otimes B | A \otimes B$ $\downarrow A \mapsto \text{Tests}(A)$ finite Φ logically correct $\iff \Phi \perp \text{Tests}(A)$.

Unified in the same framework

Types as labels (type theory). $A, B ::= X_i | X_i^{\perp} | A \otimes B | A \otimes B$. $\downarrow A \mapsto \text{Tests}(A)$ finite Φ logically correct $\iff \Phi \perp \text{Tests}(A)$.

Types as behaviour classes (realisability).

• Pre-type : set of constellation A;

Unified in the same framework

Types as labels (type theory). $A, B ::= X_i | X_i^{\perp} | A \otimes B | A \otimes B.$ $\downarrow A \mapsto \text{Tests}(A)$ finite Φ logically correct $\iff \Phi \perp \text{Tests}(A)$.

- Pre-type : set of constellation A;
- Orthogonal : A^{\perp} (dual constellations);

Unified in the same framework

Types as labels (type theory). $A, B ::= X_i | X_i^{\perp} | A \otimes B | A^{\mathcal{D}} B.$ $\downarrow A \mapsto \text{Tests}(A) \text{ finite}$ $\Phi \text{ logically correct} \iff \Phi \perp \text{Tests}(A).$

- Pre-type : set of constellation A;
- Orthogonal : A^{\perp} (dual constellations); Conduct : $A = A^{\perp \perp}$;

Unified in the same framework

Types as labels (type theory). $A, B ::= X_i | X_i^{\perp} | A \otimes B | A^{\mathcal{D}} B.$ $\downarrow A \mapsto \text{Tests}(A) \text{ finite}$ $\Phi \text{ logically correct} \iff \Phi \perp \text{Tests}(A).$

- Pre-type : set of constellation A;
- Orthogonal : A^{\perp} (dual constellations); Conduct : $A = A^{\perp \perp}$;
- Tensor : $\mathbf{A} \otimes \mathbf{B} = \{ \Phi_A \uplus \Phi_B, \Phi_A \in \mathbf{A}, \Phi_B \in \mathbf{B} \}^{\perp \perp}$.

Unified in the same framework

Types as labels (type theory). $A, B ::= X_i | X_i^{\perp} | A \otimes B | A \otimes B.$ $\downarrow A \mapsto \text{Tests}(A)$ finite Φ logically correct $\iff \Phi \perp \text{Tests}(A).$

Types as behaviour classes (realisability).

- Pre-type : set of constellation A;
- Orthogonal : A^{\perp} (dual constellations); Conduct : $A = A^{\perp \perp}$;
- Tensor : $\mathbf{A} \otimes \mathbf{B} = \{ \Phi_A \uplus \Phi_B, \Phi_A \in \mathbf{A}, \Phi_B \in \mathbf{B} \}^{\perp \perp}$.

Infinitely many (sub)types + $\Phi \in A$ usually undecidable vs Φ : A usually decidable.

Unified in the same framework

Types as labels (type theory). $A, B ::= X_i | X_i^{\perp} | A \otimes B | A \otimes B.$ $\downarrow A \mapsto \text{Tests}(A)$ finite Φ logically correct $\iff \Phi \perp \text{Tests}(A)$.

Types as behaviour classes (realisability).

- Pre-type : set of constellation A;
- Orthogonal : A^{\perp} (dual constellations); Conduct : $A = A^{\perp \perp}$;
- Tensor : $\mathbf{A} \otimes \mathbf{B} = \{ \Phi_A \uplus \Phi_B, \Phi_A \in \mathbf{A}, \Phi_B \in \mathbf{B} \}^{\perp \perp}.$

Infinitely many (sub)types + $\Phi \in A$ usually undecidable vs Φ : A usually decidable. Related by adequacy : Tests(A)^{\perp} \subseteq A.

Current works / In progress.

Current works / In progress.

• formal definition of stellar resolution & properties;

Current works / In progress.

- formal definition of stellar resolution & properties;
- encoding of several models (automata, circuits, tiling models, ...);

Current works / In progress.

- formal definition of stellar resolution & properties;
- encoding of several models (automata, circuits, tiling models, ...);
- model of MLL(+MIX) and IMELL (Intuitionistic exponentials);

Current works / In progress.

- formal definition of stellar resolution & properties;
- encoding of several models (automata, circuits, tiling models, ...);
- model of MLL(+MIX) and IMELL (Intuitionistic exponentials);

Future works.

Current works / In progress.

- formal definition of stellar resolution & properties;
- encoding of several models (automata, circuits, tiling models, ...);
- model of MLL(+MIX) and IMELL (Intuitionistic exponentials);

Future works.

• New point of view for first/second order logic + additives + neutrals;

Current works / In progress.

- formal definition of stellar resolution & properties;
- encoding of several models (automata, circuits, tiling models, ...);
- model of MLL(+MIX) and IMELL (Intuitionistic exponentials);

Future works.

- New point of view for first/second order logic + additives + neutrals;
- Implicit computational complexity analysis.

Current works / In progress.

- formal definition of stellar resolution & properties;
- encoding of several models (automata, circuits, tiling models, ...);
- model of MLL(+MIX) and IMELL (Intuitionistic exponentials);

Future works.

- New point of view for first/second order logic + additives + neutrals;
- Implicit computational complexity analysis.

Thank you for listening.