
A gentle introduction to Girard’s Transcendental Syntax

LIPN – Université Sorbonne Paris Nord

Boris Eng Thomas Seiller

A bit of context
Geometry of Interaction (GoI)

A lot of definitions...But in our case :

Girard’s original Geometry of Interaction [GoI I, 1989].

�

Goal : study the dynamics of linear logic from computation (operator algebras).

Transcendental Syntax [GoI VI, 2013] : the successor.

�

Goal : linear logic (proof-nets) as emerging from computation without semantics.

�

Computational bricks : "stellar resolution" (not the only possibility).

�

Logical correctness : by symmetric computational testing.

1/6

A bit of context
Geometry of Interaction (GoI)

A lot of definitions...But in our case :

Girard’s original Geometry of Interaction [GoI I, 1989].

�

Goal : study the dynamics of linear logic from computation (operator algebras).

Transcendental Syntax [GoI VI, 2013] : the successor.

�

Goal : linear logic (proof-nets) as emerging from computation without semantics.

�

Computational bricks : "stellar resolution" (not the only possibility).

�

Logical correctness : by symmetric computational testing.

1/6

A bit of context
Geometry of Interaction (GoI)

A lot of definitions...But in our case :

Girard’s original Geometry of Interaction [GoI I, 1989].
�

Goal : study the dynamics of linear logic from computation (operator algebras).

Transcendental Syntax [GoI VI, 2013] : the successor.

�

Goal : linear logic (proof-nets) as emerging from computation without semantics.

�

Computational bricks : "stellar resolution" (not the only possibility).

�

Logical correctness : by symmetric computational testing.

1/6

A bit of context
Geometry of Interaction (GoI)

A lot of definitions...But in our case :

Girard’s original Geometry of Interaction [GoI I, 1989].
�

Goal : study the dynamics of linear logic from computation (operator algebras).

Transcendental Syntax [GoI VI, 2013] : the successor.

�

Goal : linear logic (proof-nets) as emerging from computation without semantics.

�

Computational bricks : "stellar resolution" (not the only possibility).

�

Logical correctness : by symmetric computational testing.

1/6

A bit of context
Geometry of Interaction (GoI)

A lot of definitions...But in our case :

Girard’s original Geometry of Interaction [GoI I, 1989].
�

Goal : study the dynamics of linear logic from computation (operator algebras).

Transcendental Syntax [GoI VI, 2013] : the successor.

�

Goal : linear logic (proof-nets) as emerging from computation without semantics.

�

Computational bricks : "stellar resolution" (not the only possibility).

�

Logical correctness : by symmetric computational testing.

1/6

A bit of context
Geometry of Interaction (GoI)

A lot of definitions...But in our case :

Girard’s original Geometry of Interaction [GoI I, 1989].
�

Goal : study the dynamics of linear logic from computation (operator algebras).

Transcendental Syntax [GoI VI, 2013] : the successor.

�

Goal : linear logic (proof-nets) as emerging from computation without semantics.

�

Computational bricks : "stellar resolution" (not the only possibility).

�

Logical correctness : by symmetric computational testing.

1/6

A bit of context
Geometry of Interaction (GoI)

A lot of definitions...But in our case :

Girard’s original Geometry of Interaction [GoI I, 1989].
�

Goal : study the dynamics of linear logic from computation (operator algebras).

Transcendental Syntax [GoI VI, 2013] : the successor.

�

Goal : linear logic (proof-nets) as emerging from computation without semantics.

�

Computational bricks : "stellar resolution" (not the only possibility).

�

Logical correctness : by symmetric computational testing.

1/6

Stellar Resolution
Between tilings and logic programming

"Flexible" tiles [stars] with (un)polarised terms [rays]. Group as [constellations].

ϕ1g(x)
+a(x)

−b(x)

ϕ2

−a(f(y)) +c(y)

Evaluation : link-contraction by Robinson’s Resolution rule.

Execution : construct all possible connected & maximal tilings then evaluate them.

2/6

Stellar Resolution
Between tilings and logic programming

"Flexible" tiles [stars] with (un)polarised terms [rays]. Group as [constellations].

ϕ1g(x)
+a(x)

−b(x)

ϕ2

−a(f(y)) +c(y)

Evaluation : link-contraction by Robinson’s Resolution rule.

Execution : construct all possible connected & maximal tilings then evaluate them.

2/6

Stellar Resolution
Between tilings and logic programming

"Flexible" tiles [stars] with (un)polarised terms [rays]. Group as [constellations].

ϕ1g(x)
+a(x)

−b(x)

ϕ2

−a(f(y)) +c(y)

Evaluation : link-contraction by Robinson’s Resolution rule.

Execution : construct all possible connected & maximal tilings then evaluate them.

2/6

Stellar Resolution
Between tilings and logic programming

"Flexible" tiles [stars] with (un)polarised terms [rays]. Group as [constellations].

ϕ1g(x)
+a(x)

−b(x)

ϕ2

−a(f(y)) +c(y)

Evaluation : link-contraction by Robinson’s Resolution rule.

Execution : construct all possible connected & maximal tilings then evaluate them.

2/6

Encoding proof-structures
Computational content of proofs

` ⊗

cut

ax ax ax

R

S

RF

S F

cut Ex

ax1 ax2 ax3

cut1 cut2

3/6

Encoding proof-structures
Computational content of proofs

` ⊗

cut

ax ax ax

1 2

7

3 64 5

8

R

S

RF

S F

cut Ex

ax1 ax2 ax3

cut1 cut2

3/6

Encoding proof-structures
Computational content of proofs

` ⊗

cut

ax ax ax

1 2

7

3 64 5

8

R

S

RF

S F

cut Ex

ax1 ax2 ax3

cut1 cut2

3/6

Encoding proof-structures
Computational content of proofs

` ⊗

cut

ax ax ax

1 2

7

3 64 5

8

R

S

RF

S F

cut Ex

ax1 ax2 ax3

cut1 cut2
3/6

Encoding proof-structures
Logical content of proofs

`L ⊗

cut

ax ax ax

1 2

7

3 64 5

8

`R ⊗

cut

ax ax ax

1 2

7

3 64 5

8

Danos-Regnier correctness : is axioms+test a tree for any test?
Stellar logical correctness : does Ex(ax

S]
test
S ,φ
) satisfy some property P?

�

MLL : |Ex(ax
S]

test
S ,φ
)| = 1.

�

MLL+MIX : Ex(ax
S

test
S ,φ
) terminates.

Orthogonality. Ex(1] 2) satisfies P⇐⇒ 1 ⊥ 2.

4/6

Encoding proof-structures
Logical content of proofs

`L ⊗

cut

ax ax ax

1 2

7

3 64 5

8

`R ⊗

cut

ax ax ax

1 2

7

3 64 5

8

Danos-Regnier correctness : is axioms+test a tree for any test?

Stellar logical correctness : does Ex(ax
S]

test
S ,φ
) satisfy some property P?

�

MLL : |Ex(ax
S]

test
S ,φ
)| = 1.

�

MLL+MIX : Ex(ax
S

test
S ,φ
) terminates.

Orthogonality. Ex(1] 2) satisfies P⇐⇒ 1 ⊥ 2.

4/6

Encoding proof-structures
Logical content of proofs

`L ⊗

cut

ax ax ax

1 2

7

3 64 5

8

`R ⊗

cut

ax ax ax

1 2

7

3 64 5

8

Danos-Regnier correctness : is axioms+test a tree for any test?
Stellar logical correctness : does Ex(ax

S]
test
S ,φ
) satisfy some property P?

�

MLL : |Ex(ax
S]

test
S ,φ
)| = 1.

�

MLL+MIX : Ex(ax
S

test
S ,φ
) terminates.

Orthogonality. Ex(1] 2) satisfies P⇐⇒ 1 ⊥ 2.

4/6

Encoding proof-structures
Logical content of proofs

`L ⊗

cut

ax ax ax

1 2

7

3 64 5

8

`R ⊗

cut

ax ax ax

1 2

7

3 64 5

8

Danos-Regnier correctness : is axioms+test a tree for any test?
Stellar logical correctness : does Ex(ax

S]
test
S ,φ
) satisfy some property P?

�

MLL : |Ex(ax
S]

test
S ,φ
)| = 1.

�

MLL+MIX : Ex(ax
S

test
S ,φ
) terminates.

Orthogonality. Ex(1] 2) satisfies P⇐⇒ 1 ⊥ 2.

4/6

Encoding proof-structures
Logical content of proofs

`L ⊗

cut

ax ax ax

1 2

7

3 64 5

8

`R ⊗

cut

ax ax ax

1 2

7

3 64 5

8

Danos-Regnier correctness : is axioms+test a tree for any test?
Stellar logical correctness : does Ex(ax

S]
test
S ,φ
) satisfy some property P?

�

MLL : |Ex(ax
S]

test
S ,φ
)| = 1.

�

MLL+MIX : Ex(ax
S

test
S ,φ
) terminates.

Orthogonality. Ex(1] 2) satisfies P⇐⇒ 1 ⊥ 2.

4/6

Encoding proof-structures
Logical content of proofs

`L ⊗

cut

ax ax ax

1 2

7

3 64 5

8

`R ⊗

cut

ax ax ax

1 2

7

3 64 5

8

Danos-Regnier correctness : is axioms+test a tree for any test?
Stellar logical correctness : does Ex(ax

S]
test
S ,φ
) satisfy some property P?

�

MLL : |Ex(ax
S]

test
S ,φ
)| = 1.

�

MLL+MIX : Ex(ax
S

test
S ,φ
) terminates.

Orthogonality. Ex(1] 2) satisfies P⇐⇒ 1 ⊥ 2.
4/6

Two notions of type
Unified in the same framework

Types as labels (type theory). A,B ::= Xi | X⊥i | A⊗ B | A` B.

�

A 7→ Tests(A) finite logically correct⇐⇒ ⊥ Tests(A).

Types as behaviour classes (realisability).

• Pre-type : set of constellation A ;

• Orthogonal : A⊥ (dual constellations) ; Conduct : A = A⊥⊥ ;

• Tensor : A⊗ B = {A] B,A ∈ A,B ∈ B}⊥⊥.

Infinitely many (sub)types + ∈ A usually undecidable vs : A usually decidable.
Related by adequacy : Tests(A)⊥ ⊆ A.

5/6

Two notions of type
Unified in the same framework

Types as labels (type theory). A,B ::= Xi | X⊥i | A⊗ B | A` B.

�

A 7→ Tests(A) finite logically correct⇐⇒ ⊥ Tests(A).

Types as behaviour classes (realisability).

• Pre-type : set of constellation A ;

• Orthogonal : A⊥ (dual constellations) ; Conduct : A = A⊥⊥ ;

• Tensor : A⊗ B = {A] B,A ∈ A,B ∈ B}⊥⊥.

Infinitely many (sub)types + ∈ A usually undecidable vs : A usually decidable.
Related by adequacy : Tests(A)⊥ ⊆ A.

5/6

Two notions of type
Unified in the same framework

Types as labels (type theory). A,B ::= Xi | X⊥i | A⊗ B | A` B.

�

A 7→ Tests(A) finite logically correct⇐⇒ ⊥ Tests(A).

Types as behaviour classes (realisability).

• Pre-type : set of constellation A ;

• Orthogonal : A⊥ (dual constellations) ; Conduct : A = A⊥⊥ ;

• Tensor : A⊗ B = {A] B,A ∈ A,B ∈ B}⊥⊥.

Infinitely many (sub)types + ∈ A usually undecidable vs : A usually decidable.
Related by adequacy : Tests(A)⊥ ⊆ A.

5/6

Two notions of type
Unified in the same framework

Types as labels (type theory). A,B ::= Xi | X⊥i | A⊗ B | A` B.

�

A 7→ Tests(A) finite logically correct⇐⇒ ⊥ Tests(A).

Types as behaviour classes (realisability).

• Pre-type : set of constellation A ;

• Orthogonal : A⊥ (dual constellations) ; Conduct : A = A⊥⊥ ;

• Tensor : A⊗ B = {A] B,A ∈ A,B ∈ B}⊥⊥.

Infinitely many (sub)types + ∈ A usually undecidable vs : A usually decidable.
Related by adequacy : Tests(A)⊥ ⊆ A.

5/6

Two notions of type
Unified in the same framework

Types as labels (type theory). A,B ::= Xi | X⊥i | A⊗ B | A` B.

�

A 7→ Tests(A) finite logically correct⇐⇒ ⊥ Tests(A).

Types as behaviour classes (realisability).

• Pre-type : set of constellation A ;

• Orthogonal : A⊥ (dual constellations) ;

Conduct : A = A⊥⊥ ;

• Tensor : A⊗ B = {A] B,A ∈ A,B ∈ B}⊥⊥.

Infinitely many (sub)types + ∈ A usually undecidable vs : A usually decidable.
Related by adequacy : Tests(A)⊥ ⊆ A.

5/6

Two notions of type
Unified in the same framework

Types as labels (type theory). A,B ::= Xi | X⊥i | A⊗ B | A` B.

�

A 7→ Tests(A) finite logically correct⇐⇒ ⊥ Tests(A).

Types as behaviour classes (realisability).

• Pre-type : set of constellation A ;

• Orthogonal : A⊥ (dual constellations) ; Conduct : A = A⊥⊥ ;

• Tensor : A⊗ B = {A] B,A ∈ A,B ∈ B}⊥⊥.

Infinitely many (sub)types + ∈ A usually undecidable vs : A usually decidable.
Related by adequacy : Tests(A)⊥ ⊆ A.

5/6

Two notions of type
Unified in the same framework

Types as labels (type theory). A,B ::= Xi | X⊥i | A⊗ B | A` B.

�

A 7→ Tests(A) finite logically correct⇐⇒ ⊥ Tests(A).

Types as behaviour classes (realisability).

• Pre-type : set of constellation A ;

• Orthogonal : A⊥ (dual constellations) ; Conduct : A = A⊥⊥ ;

• Tensor : A⊗ B = {A] B,A ∈ A,B ∈ B}⊥⊥.

Infinitely many (sub)types + ∈ A usually undecidable vs : A usually decidable.
Related by adequacy : Tests(A)⊥ ⊆ A.

5/6

Two notions of type
Unified in the same framework

Types as labels (type theory). A,B ::= Xi | X⊥i | A⊗ B | A` B.

�

A 7→ Tests(A) finite logically correct⇐⇒ ⊥ Tests(A).

Types as behaviour classes (realisability).

• Pre-type : set of constellation A ;

• Orthogonal : A⊥ (dual constellations) ; Conduct : A = A⊥⊥ ;

• Tensor : A⊗ B = {A] B,A ∈ A,B ∈ B}⊥⊥.

Infinitely many (sub)types + ∈ A usually undecidable vs : A usually decidable.

Related by adequacy : Tests(A)⊥ ⊆ A.

5/6

Two notions of type
Unified in the same framework

Types as labels (type theory). A,B ::= Xi | X⊥i | A⊗ B | A` B.

�

A 7→ Tests(A) finite logically correct⇐⇒ ⊥ Tests(A).

Types as behaviour classes (realisability).

• Pre-type : set of constellation A ;

• Orthogonal : A⊥ (dual constellations) ; Conduct : A = A⊥⊥ ;

• Tensor : A⊗ B = {A] B,A ∈ A,B ∈ B}⊥⊥.

Infinitely many (sub)types + ∈ A usually undecidable vs : A usually decidable.
Related by adequacy : Tests(A)⊥ ⊆ A.

5/6

Technical developement

Current works / In progress.

• formal definition of stellar resolution & properties ;

• encoding of several models (automata, circuits, tiling models, ...) ;

• model of MLL(+MIX) and IMELL (Intuitionistic exponentials) ;

Future works.

• New point of view for first/second order logic + additives + neutrals ;

• Implicit computational complexity analysis.

Thank you for listening.

6/6

Technical developement

Current works / In progress.

• formal definition of stellar resolution & properties ;

• encoding of several models (automata, circuits, tiling models, ...) ;

• model of MLL(+MIX) and IMELL (Intuitionistic exponentials) ;

Future works.

• New point of view for first/second order logic + additives + neutrals ;

• Implicit computational complexity analysis.

Thank you for listening.

6/6

Technical developement

Current works / In progress.

• formal definition of stellar resolution & properties ;

• encoding of several models (automata, circuits, tiling models, ...) ;

• model of MLL(+MIX) and IMELL (Intuitionistic exponentials) ;

Future works.

• New point of view for first/second order logic + additives + neutrals ;

• Implicit computational complexity analysis.

Thank you for listening.

6/6

Technical developement

Current works / In progress.

• formal definition of stellar resolution & properties ;

• encoding of several models (automata, circuits, tiling models, ...) ;

• model of MLL(+MIX) and IMELL (Intuitionistic exponentials) ;

Future works.

• New point of view for first/second order logic + additives + neutrals ;

• Implicit computational complexity analysis.

Thank you for listening.

6/6

Technical developement

Current works / In progress.

• formal definition of stellar resolution & properties ;

• encoding of several models (automata, circuits, tiling models, ...) ;

• model of MLL(+MIX) and IMELL (Intuitionistic exponentials) ;

Future works.

• New point of view for first/second order logic + additives + neutrals ;

• Implicit computational complexity analysis.

Thank you for listening.

6/6

Technical developement

Current works / In progress.

• formal definition of stellar resolution & properties ;

• encoding of several models (automata, circuits, tiling models, ...) ;

• model of MLL(+MIX) and IMELL (Intuitionistic exponentials) ;

Future works.

• New point of view for first/second order logic + additives + neutrals ;

• Implicit computational complexity analysis.

Thank you for listening.

6/6

Technical developement

Current works / In progress.

• formal definition of stellar resolution & properties ;

• encoding of several models (automata, circuits, tiling models, ...) ;

• model of MLL(+MIX) and IMELL (Intuitionistic exponentials) ;

Future works.

• New point of view for first/second order logic + additives + neutrals ;

• Implicit computational complexity analysis.

Thank you for listening.

6/6

Technical developement

Current works / In progress.

• formal definition of stellar resolution & properties ;

• encoding of several models (automata, circuits, tiling models, ...) ;

• model of MLL(+MIX) and IMELL (Intuitionistic exponentials) ;

Future works.

• New point of view for first/second order logic + additives + neutrals ;

• Implicit computational complexity analysis.

Thank you for listening.
6/6

