A taste of Girard's Transcendental Syntax

Team LoVe - LIPN Université Sorbone Paris Nord
Boris ENG \& Thomas Seiller

Transcendental Syntax

Geometry of Interaction : proof-nets from the mathematics of cut-elimination

Transcendental Syntax

Geometry of Interaction : proof-nets from the mathematics of cut-elimination

- "Multiplicatives" : proofs are permutations, cut-elimination connects permutations

Transcendental Syntax

Geometry of Interaction : proof-nets from the mathematics of cut-elimination

- "Multiplicatives" : proofs are permutations, cut-elimination connects permutations

Transcendental Syntax

Geometry of Interaction : proof-nets from the mathematics of cut-elimination

- "Multiplicatives" : proofs are permutations, cut-elimination connects permutations

Transcendental Syntax

Geometry of Interaction : proof-nets from the mathematics of cut-elimination

- "Multiplicatives" : proofs are permutations, cut-elimination connects permutations

- "Gol 1,2,4,5" : interpretation operator algebras

Transcendental Syntax

Geometry of Interaction : proof-nets from the mathematics of cut-elimination

- "Multiplicatives" : proofs are permutations, cut-elimination connects permutations

- "Gol 1,2,4,5" : interpretation operator algebras
- Gol 3 :

Transcendental Syntax

Geometry of Interaction : proof-nets from the mathematics of cut-elimination

- "Multiplicatives" : proofs are permutations, cut-elimination connects permutations

- "Gol 1,2,4,5" : interpretation operator algebras
- Gol 3 :
- proofs as pairs of terms $\left(a_{1} \leftrightharpoons b_{1}\right)+\ldots+\left(a_{n} \leftrightharpoons b_{n}\right)$ (flows)

Transcendental Syntax

Geometry of Interaction : proof-nets from the mathematics of cut-elimination

- "Multiplicatives" : proofs are permutations, cut-elimination connects permutations

- "Gol 1,2,4,5" : interpretation operator algebras
- Gol 3 :
- proofs as pairs of terms $\left(a_{1} \leftrightharpoons b_{1}\right)+\ldots+\left(a_{n} \leftrightharpoons b_{n}\right)$ (flows)
- cut-elimination as resolution (unification)

Transcendental Syntax

Geometry of Interaction : proof-nets from the mathematics of cut-elimination

- "Multiplicatives" : proofs are permutations, cut-elimination connects permutations

- "Gol 1,2,4,5" : interpretation operator algebras
- Gol 3 :
- proofs as pairs of terms $\left(a_{1} \leftrightharpoons b_{1}\right)+\ldots+\left(a_{n} \leftrightharpoons b_{n}\right)$ (flows)
- cut-elimination as resolution (unification)
- Gol 6 : extension of this approach

Transcendental Syntax

Geometry of Interaction : proof-nets from the mathematics of cut-elimination

- "Multiplicatives" : proofs are permutations, cut-elimination connects permutations

- "Gol 1,2,4,5" : interpretation operator algebras
- Gol 3 :
- proofs as pairs of terms $\left(a_{1} \leftrightharpoons b_{1}\right)+\ldots+\left(a_{n} \leftrightharpoons b_{n}\right)$ (flows)
- cut-elimination as resolution (unification)
- Gol 6 : extension of this approach
- Transcendental Syntax : same but with different name and motivations.

Stellar Resolution

Term unification

First-order terms. $t, u::=x \mid f\left(t_{1}, \ldots, t_{n}\right)$

Stellar Resolution

Term unification

First-order terms. $t, u::=x \mid f\left(t_{1}, \ldots, t_{n}\right)$
Unification. $t_{1} \doteq t_{2}$: can we find $\theta:$ Vars \mapsto Terms such that $\theta t_{1}=\theta t_{2}$?

Stellar Resolution

Term unification

First-order terms. $t, u::=x \mid f\left(t_{1}, \ldots, t_{n}\right)$
Unification. $t_{1} \doteq t_{2}$: can we find $\theta:$ Vars \mapsto Terms such that $\theta t_{1}=\theta t_{2}$?
Matching. up-to-renaming $\alpha t_{1} \doteq t_{2}$

Stellar Resolution

Term unification

First-order terms. $t, u::=x \mid f\left(t_{1}, \ldots, t_{n}\right)$
Unification. $t_{1} \doteq t_{2}$: can we find $\theta:$ Vars \mapsto Terms such that $\theta t_{1}=\theta t_{2}$?
Matching. up-to-renaming $\alpha t_{1} \doteq t_{2}$
\rightarrow for $x \doteq f(x) \simeq_{\alpha} y \doteq f(x)$ we have $\theta=y \mapsto f(x)$

Stellar Resolution

Stars and constellations

A reformulation of Robinson's first-order clausal resolution (logic programming).

Stellar Resolution

Stars and constellations

A reformulation of Robinson's first-order clausal resolution (logic programming). Rays (atoms). $r::=t\left|+c\left(t_{1}, \ldots, t_{n}\right)\right|-c\left(t_{1}, \ldots, t_{n}\right)$ where c is called a "colour".

Stellar Resolution

Stars and constellations

A reformulation of Robinson's first-order clausal resolution (logic programming). Rays (atoms). $r::=t\left|+c\left(t_{1}, \ldots, t_{n}\right)\right|-c\left(t_{1}, \ldots, t_{n}\right)$ where c is called a "colour". Stars (clauses). finite and non-empty multiset $\phi=\left[r_{1}, \ldots, r_{n}\right]$.

Stellar Resolution

Stars and constellations

A reformulation of Robinson's first-order clausal resolution (logic programming). Rays (atoms). $r::=t\left|+c\left(t_{1}, \ldots, t_{n}\right)\right|-c\left(t_{1}, \ldots, t_{n}\right)$ where c is called a "colour". Stars (clauses). finite and non-empty multiset $\phi=\left[r_{1}, \ldots, r_{n}\right]$.

$$
\rightarrow[x,+f(z),-g(h(x, y)]
$$

Stellar Resolution

Stars and constellations

A reformulation of Robinson's first-order clausal resolution (logic programming). Rays (atoms). $r::=t\left|+c\left(t_{1}, \ldots, t_{n}\right)\right|-c\left(t_{1}, \ldots, t_{n}\right)$ where c is called a "colour". Stars (clauses). finite and non-empty multiset $\phi=\left[r_{1}, \ldots, r_{n}\right]$.

$$
厶[x,+f(z),-g(h(x, y)]
$$

Constellations (programs). multiset $\Phi=\phi_{1}+\ldots+\phi_{m}+\ldots$ (the variables are locals).

Stellar Resolution

Stars and constellations

A reformulation of Robinson's first-order clausal resolution (logic programming).
Rays (atoms). $r::=t\left|+c\left(t_{1}, \ldots, t_{n}\right)\right|-c\left(t_{1}, \ldots, t_{n}\right)$ where c is called a "colour".
Stars (clauses). finite and non-empty multiset $\phi=\left[r_{1}, \ldots, r_{n}\right]$.

$$
厶[x,+f(z),-g(h(x, y)]
$$

Constellations (programs). multiset $\Phi=\phi_{1}+\ldots+\phi_{m}+\ldots$ (the variables are locals).
$\llcorner[+\operatorname{add}(0, y, y)]+[+\operatorname{add}(s(x), y, s(z)),-\operatorname{add}(x, y, z)]$

Stellar Resolution

Stars and constellations

A reformulation of Robinson's first-order clausal resolution (logic programming).
Rays (atoms). $r::=t\left|+c\left(t_{1}, \ldots, t_{n}\right)\right|-c\left(t_{1}, \ldots, t_{n}\right)$ where c is called a "colour".
Stars (clauses). finite and non-empty multiset $\phi=\left[r_{1}, \ldots, r_{n}\right]$.

$$
厶[x,+f(z),-g(h(x, y)]
$$

Constellations (programs). multiset $\Phi=\phi_{1}+\ldots+\phi_{m}+\ldots$ (the variables are locals).
$厶[+\operatorname{add}(0, y, y)]+[+\operatorname{add}(s(x), y, s(z)),-\operatorname{add}(x, y, z)]$

Unlike logic programming : no logic/meaning, no contradiction \perp, no goal/query.

Multiplicative Linear Logic

Interpreting the dynamics of proofs

Multiplicative Linear Logic

Interpreting the dynamics of proofs

$p_{A_{1}^{\perp}>A_{1}}(l \cdot x)$	$p_{A_{1}^{\perp}>A_{1}}(r \cdot x)$

Multiplicative Linear Logic

Interpreting the dynamics of proofs

Multiplicative Linear Logic

Interpreting the dynamics of proofs

Multiplicative Linear Logic

Interpreting the dynamics of proofs

Multiplicative Linear Logic

Interpreting the dynamics of proofs

Multiplicative Linear Logic

Interpreting the dynamics of proofs

Multiplicative Linear Logic

Interpreting the dynamics of proofs

Multiplicative Linear Logic

Interpreting the dynamics of proofs

Multiplicative Linear Logic

Interpreting the dynamics of proofs

Cut-elimination : resolution of contraints on addresses

Multiplicative Linear Logic
Liberalisation of proofs

Multiplicative Linear Logic
Liberalisation of proofs

- pre-proof of $\vdash \mathrm{A} \quad\left\{\left[p_{A}(x)\right]\right\}$

Multiplicative Linear Logic

Liberalisation of proofs

- pre-proof of $⺊ \mathrm{~A} \quad\left\{\left[p_{A}(x)\right]\right\}$
- n-ary axioms $\left\{\left[p_{A_{1}}\left(t_{1}\right), \ldots, p_{A_{n}}\left(t_{n}\right)\right]\right\}$

Multiplicative Linear Logic

Liberalisation of proofs

- pre-proof of $⺊ \mathrm{~A} \quad\left\{\left[p_{A}(x)\right]\right\}$
- n-ary axioms $\left\{\left[p_{A_{1}}\left(t_{1}\right), \ldots, p_{A_{n}}\left(t_{n}\right)\right]\right\}$
- standalone link $A \otimes B \quad\left[p_{A}(x)\right]+\left[p_{B}(x)\right]$

Multiplicative Linear Logic

Liberalisation of proofs

- pre-proof of $⺊ \mathrm{~A} \quad\left\{\left[p_{A}(x)\right]\right\}$
- n-ary axioms $\left\{\left[p_{A_{1}}\left(t_{1}\right), \ldots, p_{A_{n}}\left(t_{n}\right)\right]\right\}$
- standalone link $A \otimes B \quad\left[p_{A}(x)\right]+\left[p_{B}(x)\right]$

Generalises permutations but also partitions [Acclavio, Maieli]

Multiplicative Linear Logic

Girard's factory : vehicle and tests

Multiplicative Linear Logic

Girard's factory : vehicle and tests

Multiplicative Linear Logic

Girard's factory : vehicle and tests

Multiplicative Linear Logic

Girard's factory : vehicle and tests

Danos-Regnier correctness \longrightarrow Vehicle + Test $=$ certification of proof-net

Multiplicative Linear Logic

Girard's factory : vehicle and tests

$+t . p_{A \otimes B}(l \cdot x)$	$+t . p_{A^{\perp} \gamma_{B}}(l \cdot x)$

$+t . p_{A \otimes B}(r \cdot x)$	$+t . p_{A^{\perp} x_{B}}(r \cdot x)$

Multiplicative Linear Logic

Girard's factory : vehicle and tests

$+t . p_{A \otimes B}(l \cdot x)$	$+t . p_{A^{\perp} \perp \chi_{B^{\perp}}(l \cdot x)}$

$$
\begin{array}{|l|l|}
\hline+t . p_{A \otimes B}(r \cdot x) & +t . p_{A^{\perp}>B^{\perp}}(r \cdot x) \\
\hline
\end{array}
$$

$\left[\frac{-t . p_{A \& B}(1 \cdot x)}{+c . q_{A}(x)}\right]$

$$
\left[\frac{-t \cdot p_{A \otimes B}(r \cdot x)}{+c \cdot a_{A} 1}(x)\right]
$$

$$
\left[\frac{-t . p_{A} \perp_{\gamma_{B}} \perp(l \cdot x)}{+c . q_{B}(x)}\right]
$$

$$
\left[\frac{-t . p_{A} \perp \gamma_{8} \perp(r \cdot x)}{+c . q_{Q^{\prime}} \perp(x)}\right]
$$

$$
\left[\frac{-c . q_{A}(x)-c . q_{B}(x)}{+c . q_{A \otimes B}(x)}\right]
$$

$-\frac{-c . a_{A} \perp(x)}{-c . q_{B^{\perp}}(x)}+$

$$
\left[\frac{-c \cdot q_{A \otimes B}(x)}{p_{A \otimes B}(x)}\right]
$$

$[\frac{-c . a_{A} \perp_{\gamma_{8}}(x)}{p_{A} \overbrace{\gamma 8}{ }^{\perp}(x)}]$

Multiplicative Linear Logic

Girard's factory : vehicle and tests

Multiplicative Linear Logic

Girard's factory : vehicle and tests

correct iff for all test Φ_{T} we have $\operatorname{Ex}\left(\Phi_{V} \uplus \Phi_{T}\right)=\left[p_{A_{1}}(x), \ldots, p_{A_{n}}(x)\right]$.

Multiplicative Linear Logic

Testing and typing

Similar to testing in programming but with finitely many tests. $\quad \Phi, \Phi^{\prime}: \operatorname{Ex}\left(\Phi \uplus \Phi^{\prime}\right) ?$

Multiplicative Linear Logic

Testing and typing

Similar to testing in programming but with finitely many tests. $\quad \Phi, \Phi^{\prime}: \operatorname{Ex}\left(\Phi \uplus \Phi^{\prime}\right) ?$

Multiplicative Linear Logic

Testing and typing

Similar to testing in programming but with finitely many tests. $\quad \Phi, \Phi^{\prime}: \operatorname{Ex}\left(\Phi \uplus \Phi^{\prime}\right)$?

- $\Phi \perp \Phi^{\prime}$ when $\left|E x\left(\Phi \uplus \Phi^{\prime}\right)\right|<\infty$: MLL+MIX (acyclic tests).

Multiplicative Linear Logic

Testing and typing

Similar to testing in programming but with finitely many tests. $\quad \Phi, \Phi^{\prime}: \operatorname{Ex}\left(\Phi \uplus \Phi^{\prime}\right)$?

- $\Phi \perp \Phi^{\prime}$ when $\left|E x\left(\Phi \uplus \Phi^{\prime}\right)\right|<\infty$: MLL+MIX (acyclic tests).
- $\Phi \perp \Phi^{\prime}$ when $\left|E x\left(\Phi \uplus \Phi^{\prime}\right)\right|=1$: MLL (acyclic and connected tests).

Multiplicative Linear Logic

Testing and typing

Similar to testing in programming but with finitely many tests. $\Phi, \Phi^{\prime}: \operatorname{Ex}\left(\Phi \uplus \Phi^{\prime}\right)$?

- $\Phi \perp \Phi^{\prime}$ when $\left|E x\left(\Phi \uplus \Phi^{\prime}\right)\right|<\infty$: MLL+MIX (acyclic tests).
- $\Phi \perp \Phi^{\prime}$ when $\left|E x\left(\Phi \uplus \Phi^{\prime}\right)\right|=1$: MLL (acyclic and connected tests).

We use realisability techniques (as in Ludics). From a chosen \perp :

Multiplicative Linear Logic

Testing and typing

Similar to testing in programming but with finitely many tests. $\Phi, \Phi^{\prime}: \operatorname{Ex}\left(\Phi \uplus \Phi^{\prime}\right)$?

- $\Phi \perp \Phi^{\prime}$ when $\left|E x\left(\Phi \uplus \Phi^{\prime}\right)\right|<\infty$: MLL+MIX (acyclic tests).
- $\Phi \perp \Phi^{\prime}$ when $\left|E x\left(\Phi \uplus \Phi^{\prime}\right)\right|=1$: MLL (acyclic and connected tests).

We use realisability techniques (as in Ludics). From a chosen \perp :

- pre-type A : set of constellations.

Multiplicative Linear Logic

Testing and typing

Similar to testing in programming but with finitely many tests. $\quad \Phi, \Phi^{\prime}: \operatorname{Ex}\left(\Phi \uplus \Phi^{\prime}\right)$?

- $\Phi \perp \Phi^{\prime}$ when $\left|E x\left(\Phi \uplus \Phi^{\prime}\right)\right|<\infty$: MLL+MIX (acyclic tests).
- $\Phi \perp \Phi^{\prime}$ when $\left|E x\left(\Phi \uplus \Phi^{\prime}\right)\right|=1$: MLL (acyclic and connected tests).

We use realisability techniques (as in Ludics). From a chosen \perp :

- pre-type A : set of constellations.
- linear negation $\sim A:=A^{\perp}:=\left\{\Phi^{\prime} \mid \forall \Phi \in A, \Phi \perp \Phi^{\prime}\right\}$.

Multiplicative Linear Logic

Testing and typing

Similar to testing in programming but with finitely many tests. $\quad \Phi, \Phi^{\prime}: \operatorname{Ex}\left(\Phi \uplus \Phi^{\prime}\right)$?

- $\Phi \perp \Phi^{\prime}$ when $\left|E x\left(\Phi \uplus \Phi^{\prime}\right)\right|<\infty$: MLL+MIX (acyclic tests).
- $\Phi \perp \Phi^{\prime}$ when $\left|\operatorname{Ex}\left(\Phi \uplus \Phi^{\prime}\right)\right|=1$: MLL (acyclic and connected tests).

We use realisability techniques (as in Ludics). From a chosen \perp :

- pre-type A: set of constellations.
- linear negation $\sim A:=A^{\perp}:=\left\{\Phi^{\prime} \mid \forall \Phi \in A, \Phi \perp \Phi^{\prime}\right\}$.
- type : $A=A^{\perp \perp}$.

Multiplicative Linear Logic

Testing and typing

Similar to testing in programming but with finitely many tests. $\quad \Phi, \Phi^{\prime}: \operatorname{Ex}\left(\Phi \uplus \Phi^{\prime}\right) ?$

- $\Phi \perp \Phi^{\prime}$ when $\left|\operatorname{Ex}\left(\Phi \uplus \Phi^{\prime}\right)\right|<\infty$: MLL+MIX (acyclic tests).
- $\Phi \perp \Phi^{\prime}$ when $\left|\operatorname{Ex}\left(\Phi \uplus \Phi^{\prime}\right)\right|=1$: MLL (acyclic and connected tests).

We use realisability techniques (as in Ludics). From a chosen \perp :

- pre-type A : set of constellations.
- linear negation $\sim A:=A^{\perp}:=\left\{\Phi^{\prime} \mid \forall \Phi \in A, \Phi \perp \Phi^{\prime}\right\}$.
- type : A = $A^{\perp \perp}$.
- tensor : $\mathrm{A} \otimes \mathrm{B}=\left\{\Phi_{\mathrm{A}} \uplus \Phi_{\mathrm{B}} \mid \Phi_{\mathrm{A}} \in \mathrm{A}, \Phi_{\mathrm{B}} \in \mathrm{B}\right\}^{\perp \perp}$ when A, B not matchable.

Multiplicative Linear Logic

Testing and typing

Similar to testing in programming but with finitely many tests. $\quad \Phi, \Phi^{\prime}: \operatorname{Ex}\left(\Phi \uplus \Phi^{\prime}\right) ?$

- $\Phi \perp \Phi^{\prime}$ when $\left|E x\left(\Phi \uplus \Phi^{\prime}\right)\right|<\infty$: MLL+MIX (acyclic tests).
- $\Phi \perp \Phi^{\prime}$ when $\left|\operatorname{Ex}\left(\Phi \uplus \Phi^{\prime}\right)\right|=1$: MLL (acyclic and connected tests).

We use realisability techniques (as in Ludics). From a chosen \perp :

- pre-type A : set of constellations.
- linear negation $\sim A:=A^{\perp}:=\left\{\Phi^{\prime} \mid \forall \Phi \in A, \Phi \perp \Phi^{\prime}\right\}$.
- type : A = $A^{\perp \perp}$.
- tensor : $\mathrm{A} \otimes \mathrm{B}=\left\{\Phi_{\mathrm{A}} \uplus \Phi_{\mathrm{B}} \mid \Phi_{\mathrm{A}} \in \mathrm{A}, \Phi_{\mathrm{B}} \in \mathrm{B}\right\}^{\perp \perp}$ when A, B not matchable.
- Types as descriptions of computation, not contraints.

Conclusion

Other linear logic fragments

Conclusion

Other linear logic fragments

- exponentials (IMELL) : work in progress

Conclusion

Other linear logic fragments

- exponentials (IMELL) : work in progress
- additives, neutrals, full exponentials : handled in second order

Conclusion

Other linear logic fragments

- exponentials (IMELL) : work in progress
- additives, neutrals, full exponentials : handled in second order
- first-order : internal colours + individuals $\forall x . A$ as multiplicatives.

Conclusion

Other linear logic fragments

- exponentials (IMELL) : work in progress
- additives, neutrals, full exponentials : handled in second order
- first-order : internal colours + individuals $\forall x . A$ as multiplicatives.

Natural encoding of several models :

Conclusion

Other linear logic fragments

- exponentials (IMELL) : work in progress
- additives, neutrals, full exponentials : handled in second order
- first-order : internal colours + individuals $\forall x . A$ as multiplicatives.

Natural encoding of several models :

- λ-calculus, logic programming (disjunctive clauses)

Conclusion

Other linear logic fragments

- exponentials (IMELL) : work in progress
- additives, neutrals, full exponentials : handled in second order
- first-order : internal colours + individuals $\forall x . A$ as multiplicatives.

Natural encoding of several models :

- λ-calculus, logic programming (disjunctive clauses)
\rightarrow logico-functional space?

Conclusion

Other linear logic fragments

- exponentials (IMELL) : work in progress
- additives, neutrals, full exponentials : handled in second order
- first-order : internal colours + individuals $\forall x . A$ as multiplicatives.

Natural encoding of several models :

- λ-calculus, logic programming (disjunctive clauses)
\rightarrow logico-functional space?
- Wang's tiles, abstract tile assembly model (aTAM) used in DNA computing

Conclusion

Other linear logic fragments

- exponentials (IMELL) : work in progress
- additives, neutrals, full exponentials : handled in second order
- first-order : internal colours + individuals $\forall x . A$ as multiplicatives.

Natural encoding of several models :

- λ-calculus, logic programming (disjunctive clauses)

4 logico-functional space?

- Wang's tiles, abstract tile assembly model (aTAM) used in DNA computing

L cyclic (grid) diagrams

